
Master’s Thesis Nr. 180

Systems Group, Department of Computer Science, ETH Zurich

Hardware Configuration With Dynamically-Queried Formal Models

by

Daniel Schwyn

Supervised by

Reto Acherman
Dr. David Cock

Prof. Dr. Timothy Roscoe

April 2017 – October 2017

Abstract

Hardware is getting increasingly complex and heterogeneous. With different compo-
nents having different views of the system, the traditional assumption of unique phys-
ical addresses has become an illusion. To adapt to such hardware, an operating system
(OS) needs to understand the complex address translation chains and be able to handle
the presence of multiple address spaces. This thesis takes a recently proposed model
that formally captures these aspects and applies it to hardware configuration in the
Barrelfish OS.

To this end, I present Sockeye, a domain specific language that uses the model to de-
scribe hardware. I then show, that code relying on knowledge about the address spaces
in a system can be statically generated from these specifications. Furthermore, the
model is successfully applied to device management, showing that it can also be used
to configure hardware at runtime. The implementation presented here does not rely
on any platform specific code and it reduced the amount of such code in Barrelfish’s
device manager by over 30%. Applying the model to further hardware configuration
tasks is expected to have similar effects.

i

Acknowledgements

First of all, I want to thank my advisers Timothy Roscoe, David Cock and Reto Acher-
mann for their guidance and support. Their feedback and critical questions were a
valuable contribution to this thesis.

I’d also like to thank the rest of the Barrelfish team and other members of the Systems
Group at ETH for the interesting discussions during meetings and coffee breaks.

Last but not least my thanks go to my family and friends for their ongoing support
during my studies at ETH.

ii

Contents

1 Introduction 1

2 Related Work 4

3 Background 6
3.1 Address Decoding Nets . 6
3.2 Barrelfish’s System Knowledge Base . 9
3.3 ECLiPSe . 9

3.3.1 Basics . 10
3.3.2 Constraints . 12

4 Sockeye 14
4.1 Language Overview . 15
4.2 Basic Syntax . 15

4.2.1 Node Declarations . 16
4.2.2 Node Specifications . 17
4.2.3 Block Specifications . 18
4.2.4 Map Specifications . 18
4.2.5 Differences to the Original Syntax 19

4.3 Advanced Features . 20
4.3.1 Modules . 21
4.3.2 Templated Identifiers . 24
4.3.3 Imports . 27
4.3.4 Sockeye Files . 27

4.4 Compiler . 29
4.4.1 Implementation . 30

iii

CONTENTS iv

4.5 Evaluation . 32
4.6 Summary . 33

5 SKB Schema 34
5.1 Representation . 34
5.2 Queries . 36
5.3 Evaluation . 40
5.4 Summary . 41

6 Hardware Configuration in Barrelfish 43
6.1 Preliminaries . 43

6.1.1 CPU Drivers . 44
6.1.2 Capabilities . 44
6.1.3 Octopus . 44
6.1.4 Kaluga . 45

6.2 Generating Kernel Page Tables . 46
6.2.1 Implementation . 46

6.3 Device Management . 47
6.3.1 Implementation . 47

6.4 Evaluation . 48
6.4.1 Performance . 49
6.4.2 Code Complexity . 51

6.5 Summary . 53

7 Conclusion & Future Work 54
7.1 Improvements . 55
7.2 Hardware Verification Using Sockeye . 55
7.3 Static Code Generation . 56
7.4 Unifying Hardware Knowledge . 56

A Lexical Conventions in Sockeye 58

B Sockeye Syntax 60

C Sockeye Checks 62
C.1 Type Checks . 62

CONTENTS v

C.2 Checks during Module Template Instantiation 63
C.3 Checks during Module Instantiation . 63

List of Figures

3.1 Simplified addressing block diagram of the Texas Instruments OMAP
4460 SoC (adapted from [1]) . 7

4.1 Simplified modular view of the Texas Instruments OMAP 4460 SoC . . . 16

5.1 Simplified ADN of the Texas Instruments OMAP 4460 SoC 37

vi

List of Listings

4.1 Sockeye specification for a simplified OMAP4460 27
5.1 Prolog representation for ADNs . 35
5.2 Prolog representation for ADN regions 39
6.1 ADN query to obtain a flattened version of a node 50

vii

List of Tables

6.1 ADN query execution times . 49
6.2 Lines of code (LOC) comparison between Barrelfish (BF) and the imple-

mentation for this thesis (T) . 52

viii

Chapter 1

Introduction

Hardware is getting increasingly heterogeneous. Processors of different types and even
architectures are present on the same chip alongside a wide variety of peripheral de-
vices. Furthermore, devices and increasingly also cores can appear and disappear at
any time e.g. for heat and power management purposes [11]. Operating systems (OSs)
need to be able to run on and configure these systems ranging from small systems on a
chip (SoCs) to server platforms with thousands of cores.

Hardcoding support for every platform into the system is not an option. Supporting
new platforms would mean adapting the kernel and other OS parts, resulting in in-
creasingly unmaintainable code. Furthermore, recompiling the OS for every existing
hardware combination would be simply infeasible. Thus, the OS needs to be able to
gather information about the platform it is running on and adapt to the hardware.
There are several existing approaches to solve this problem, and I discuss the most
important ones in more detail in Chapter 2.

However, diversity is only part of the challenge today’s system software faces. Tra-
ditionally a computer system has been modelled as a processor with a memory man-
agement unit (MMU), which translates the requested virtual addresses to physical ad-
dresses. Physical addresses then correspond to device registers or locations in memory.
This view is getting more and more unsuitable for writing correct systems code. To-
day’s computer systems are becoming increasingly complex networks of CPUs, GPUs,
accelerators, memory nodes, and peripheral devices. Address translation often con-
sists of multiple stages and a globally shared view on the system has become simply
an illusion: A “physical” address can denote different things depending on where it is

1

CHAPTER 1. INTRODUCTION 2

used.

To illustrate these difficulties we take a look at the Texas Instruments OMAP4460. It
is representative of the SoCs found in a wide range of multimedia devices nowadays.
It has been used in products like the Amazon Kindle Fire 7" and also in the Pand-
aboardES, which is used as the test platform for this thesis. It features an ARMv7
Cortex-A9 multiprocessor with two cores, two Cortex-M3 cores and other processors
like a GPU. Furthermore, there are DMA capable devices, which can also issue loads
and stores to memory. Detailed documentation is publicly available in form of a Techni-
cal Reference Manual [22]. Address translation in this system is by no means as simple
as the traditional model assumes (Figure 3.1 shows a simplifed addressing diagram).
A good example for this are the two M3 cores. They share a first level (L1) MMU and
thus always use the same virtual address space. After the first translation the “physi-
cal” addresses are either forwarded to local ROM or RAM or to another second level
(L2) MMU that offers a window into the level 3 (L3) interconnect. The M3 local ROM
and RAM are in turn accessible from the L3 interconnect, meaning that different ad-
dresses issued by the L1 MMU might address the same memory cell, some directly and
some with a detour through the L3 interconnect. The A9 cores come with their own
MMUs and local ROM which can only be accessed from their local interconnect. The
“physical”address spaces these MMUs translate to are therefore different from the one
for the M3 cores’ L1 MMU. There are also several subsystems on the chip that add even
more address spaces.

This sort of complex address translation chains and the fact, that even comparatively
simple systems like the OMAP have several address spaces, make it hard to reason
about software running on these platforms. Without an accurate model, it is hard to
write correct code that interacts directly with hardware. In 2001 Chou et al. found that
error rates in Linux drivers are three to seven times higher than in the rest of the ker-
nel [5]. Swift et al. reported that in Windows XP, drivers accounted for 85% of all recent
system failures in 2003 [21]. Since then the complexity of hardware has only increased.
Better correctness guarantees are needed. However, without a model that is able to
capture the complexity, synthesis or formal verification approaches are impossible.

Recently Achermann et al. presented a model that formalises address decoding [1]. It
captures the aforementioned address translation chains and interactions between dif-
ferent address spaces. The authors also present a concrete syntax in which hardware
can be described using the model and show that they can model real systems. For

CHAPTER 1. INTRODUCTION 3

the rest of this thesis I will refer to the model as address decoding nets (ADNs). It is
discussed in more detail in Chapter 3.

Ideally such formal specifications would be supplied by the hardware manufacturer.
Adding support for a new platform to an OS requires a big effort compared to the
relatively short lifetime of today’s systems. If these specifications could be used to
configure hardware, this effort would be greatly reduced.

This thesis shows that the ADNs can be used for hardware configuration by applying
them to automatic configuration in the Barrelfish OS. Barrelfish’s multikernel architec-
ture [3] pushes configuration tasks out of the kernel to a reasoning engine called the
System Knowledge Base (SKB). The SKB allows one to describe problems declaratively,
making it easier to reason about them. This makes Barrelfish a good fit to apply a formal
model to a low-level task like hardware configuration.

I start with a review of current approaches to tackle hardware diversity in OSs and talk
about how declarative techniques are already used in Barrelfish (Chaper 2). In Chap-
ter 3, I discuss the important aspects of ADNs and Barrelfish’s SKB for this thesis. To be
able to describe hardware, I designed a domain specific language (DSL) based on the
concrete syntax proposed for ADNs. Its syntax, language features and the implemented
compiler are described in Chapter 4. For hardware configuration algorithms to be able
to use knowledge about the system’s address spaces, I designed an SKB representation
for ADNs. The representation and how it can be queried is discussed in Chapter 5. To
validate the approach I then implemented two configuration tasks in Barrelfish running
on a PandaboardES. I first show that ADNs can be used for static code generation by
constructing kernel page tables at compile time. For the second task I extended the de-
vice manager. I use the ADN representation in the SKB to discover devices and cores.
Upon discovery of a device, an appropriate driver is started. To find the addresses
of the device registers the driver needs access to, the device manager also queries the
ADN. By outsourcing all address space knowledge to the formal model, the code deal-
ing with ARMv7 device management becomes mostly platform independent. Having
a platform independent and maybe, with some additional work, even an architecture
independent device manager would be a huge win for maintainability. Providing a for-
mal description of a platform would suffice for adding device management support.
The implementation is described in Chapter 6. I finally conclude in Chapter 7 and give
an overview of future work.

Chapter 2

Related Work

As the problem of adapting an OS to an increasingly diverse zoo of hardware plat-
forms is not new, several standards for acquiring hardware information have emerged.
Many systems support ACPI [12], a standard through which system firmware can pro-
vide OSs with configuration information. With PCI [13] available devices can be dis-
covered and information about their functionality is provided. However, often more
information than these standards provide is required to correctly configure a system.
Furthermore, many SoCs do not implement these standards. ACPI has also been heav-
ily criticised for the complexity of the standard [8]. Other concerns address the fact that
configuration information is stored as bytecode, which needs to be executed inside the
kernel. It has even been called a trojan horse [20] as this potentially allows the injection
of malicious code into the OS kernel.

Another approach to decouple hardware information from the OS kernel are device
trees [9]. A device tree is a hierarchical data structure to describe hardware topologies
statically. They were originally used to pass hardware information from firmware to
systems software, but support is now also built directly into software. Linux for exam-
ple makes heavy use of them to decouple hardware information about platforms with
no discovery mechanisms from the rest of the kernel. However, their tendency to rely
on conventions rather than strict specifications make them error prone [17]. As device
trees do not define clear semantics, it is hard to verify their correctness. Using them as a
basis for formal reasoning about hardware properties or verifying systems software is
downright impossible. Device trees also assume a globally shared view on the system.
With different processor types, accelerators and DMA capable devices, even simple

4

CHAPTER 2. RELATED WORK 5

systems nowadays have multiple address spaces, and different parts of the system can
have different apertures into the address spaces of other components. With the OMAP
we have already seen an example. The assumption of globally unique addresses has
become too simplistic if not plain wrong. In Section 3.1, I show how ADNs tackle the
problem.

Device trees are either supplied by the manufacturer or need to be deduced from hard-
ware sheets. For some hardware they are hard to come by, for other they are incom-
plete. If documentation is available, extracting the right information from these sheets
is tedious. Address space information is intertwined with programming models and
lengthy description of which device register bits have what functionality. The docu-
ment describing the OMAP4460 [22] is 5820 pages long! Although the documentation
for the OMAP is one of the better examples, it still falls for the unique address space
illusion when presenting some of the information. If formal specifications would be
supplied by hardware manufacturers the labour needed to parse data sheets would be
greatly reduced. In the course of this thesis I designed a DSL to describe hardware
using ADNs.

Barrelfish tries to reduce the complexity of platform dependent mechanism code by
pushing policy decisions to the SKB. The SKB allows to describe desired properties
of allocation policies declaratively. In Chapter 3.2 it is discussed in more detail. No-
table efforts to configure hardware with declarative algorithms include the work by
Schüpbach et al. [18]. They applied high-level declarative language techniques to PCI
programming. They were able to allocate resources more efficiently than current solu-
tions used in Linux and written in C. Altough incuring a performance overhead, it was
acceptable and compensated by the improved allocation policy and lower code com-
plexity. A wide range of PCI devices also exhibits so called “quirks”, bugs that require
special treatment when configuring the hardware. The linux kernel includes an exten-
sive collection of workarounds for such quirks, all written in C and therefore hard to
maintain. Schüpbach et al. found that by declaratively describing the desired policy,
these quirks can be handled much cleaner. By adding address space knowledge to the
SKB and using it to configure hardware, I build on their work.

Parallel to this thesis, Humbel et al. [14] worked on applying the formal model to
declarative interrupt programming.

Chapter 3

Background

The first part of this chapter is an introduction to the formal model this thesis relies
on. In the second part, Barrelfish’s System Knowledge Base is discussed to provide the
necessary background about the service and the constraint logic programming (CLP)
system it uses.

3.1 Address Decoding Nets

This thesis relies on a formal model developed by Achermann et al. I refer tit as an
ADNs. ADNs formally capture address decoding. In the following I give a description
of how they model address spaces. As the goal of this thesis is to apply the model to
hardware configuration, the description is given from a practical point of view. I refer
to the original work for a more formal specification [1].

In Chapter 1, I already used the Texas Instruments OMAP4460 to illustrate the complex-
ity of today’s computer systems. I use it again here to illustrate how ADNs work. A
heavily simplified addressing block diagram of the OMAP is depicted in Figure 3.1. We
only show the interaction between the address spaces as seen by the Cortex-A9 cores
and the Cortex-M3 cores. Also note, that the L1 MMUs and the corresponding virtual
address spaces are not shown in the diagram. The top level blocks (Cortex-A9 1,
Cortex-A9 2 and Cortex-M3 MIF) depict what would traditionally be described as
the physical address spaces of the cores.

6

CHAPTER 3. BACKGROUND 7

Peripherals 1

(3)

Peripherals 1

(3)

UART3(8)UART3(8) SDRAM(9)SDRAM(9)

Peripherals 2

(4)

Peripherals 2

(4)

ROM(6)ROM(6) ROM(11)ROM(11) RAM(12)RAM(12)

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

Cortex-A9 1(1)

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

Cortex-A9 1(1)

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

Cortex-A9 2(2)

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

Cortex-A9 2(2)

00000000

4002FFFF

00000000

4002FFFF

40030000

4003BFFF

40030000

4003BFFF

4003C000

FFFFFFFF

4003C000

FFFFFFFF

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local Interconnect(5)

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local Interconnect(5)

60000000

7FFFFFFF

60000000

7FFFFFFF

32001000

320013FF

32001000

320013FF

60000000

7FFFFFFF

32001000

320013FF

Cortex M3 L2(13)

60000000

7FFFFFFF

32001000

320013FF

Cortex M3 L2(13)

00000000

54FFFFFF

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55020000

5502FFFF

55004000

FFFFFFFF

55004000

FFFFFFFF

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55004000

FFFFFFFF

Cortex M3 MIF(10)

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55004000

FFFFFFFF

Cortex M3 MIF(10)

48020000

480203FF

48020000

480203FF

55000000

55FFFFFF

55000000

55FFFFFF

80000000

BFFFFFFF

80000000

BFFFFFFF

48020000

480203FF

55000000

55FFFFFF

80000000

BFFFFFFF

L3(7)

48020000

480203FF

55000000

55FFFFFF

80000000

BFFFFFFF

L3(7)

Figure 3.1: Simplified addressing block diagram of the Texas Instruments OMAP 4460
SoC (adapted from [1])

There are two different kinds of blocks in the diagram. The dark ones represent hard-
ware components where address translation terminates. In our case, these are memory
nodes or device registers that can be read from or written to. The other kind of nodes
take incoming addresses and forward them to other nodes. This is e.g. the case for
MMUs. In an ADN, hardware components are represented by nodes. In the first case a
node is said to accept an address and in the second one it translates the address.

If we look at the two A9 cores, we can see, that they each have their own private periph-
eral region. If we decode address 0x48240000, we end in different nodes depending
on the core we start from. Therefore, an address is not enough to completly define a
location in a system. It needs to be qualified by the identifier of the node it is used at. In
an ADN addresses and node identifiers are natural numbers. In the diagram the node
identifiers are written in parantheses behind the component names. The tuple of a node
identifier and an andress qualified by it is called a name. Nodes therefore do not simply

CHAPTER 3. BACKGROUND 8

translate addresses to other addresses but to names. A node is completely defined by
its set of accepted addresses and the set of translated addresses, along with the names
it translates them to.

We can now define the accepted names set and the decode relation of an ADN:

Accepted names set The set of all names where the name’s address is accepted by the
node corresponding to the name’s node identifier.

Decode relation The set of all pairs of names where the first name’s address is trans-
lated to the second name by the node identified by the first name.

From these two we can define the resolution function:

Resolution function The resolution function maps each name to a set of accepted names,
where each pair of the mapped name and an element of the image set is in the re-
flexive transitive closure of the decode relation.

Assume that all dark nodes in the diagram have the same size as their direct predeces-
sor and their accepted range starts at 0x0. Examples of accepted names would then be
(9,0x0) or (11,3FFF). The following would be examples for pairs of names in the
decode relation:

((7,0x55000000),(10,0x55000000))

((1,0x48240000),(3,0x0))

To illustrate how the resolution function works, let’s look at the following name:

(10,0x32001000)

We could first calculate the reflexive transitive closure of the decode relation. However,
the easier and more intuitive way is to interpret the tuples in the relation as edges in a
directed graph with the names as nodes.

A particular name then resolves to all accepted names that can be reached by starting
from that name and following the edges (including the name itself if is in the set of
accepted names). (10,0x32001000) is not an accepted name so we follow the only
outgoing edge to (13,0x32001000), which is not an accepted name either. We then
get to (7,0x48020000) and finally to (8,0x0). The node identified by 8 accepts
address 0x0, meaning that (10,0x32001000) resolves to (8,0x0). As there were
no alternative edges to take, and none of the names along the way was an accepted
name, this is in fact the only name to which it resolves.

CHAPTER 3. BACKGROUND 9

By modelling systems as a directed graph, ADNs can capture even complicated address
translation chains. In this thesis they will be used to model the OMAP4460 and provide
the basis for correctly configuring hardware.

3.2 Barrelfish’s System Knowledge Base

In Barrelfish there is a central system service called the SKB. Its purpose is to store gath-
ered knowledge about the system and make it available to clients [19]. I extend this
knowledge to address spaces using ADNs. The SKB enables the usage of high-level
declarative language techniques. As already mentioned in Chapter 2, these techniques
provide a more natural way to describe policies than C does. Barrelfish derives config-
uration parameters derived from these policies. The parameters are then used in fast,
low-level C code to configure the system accordingly. This separation of policy and
mechanism code helps to keep complexity out of low-level code and makes it easier to
reason about complex policies. It also allows for complex algorithm’s to be run off the
system’s fast path.

The SKB is implemented using an embedded version of ECLiPSe [7], a CLP system.
The data in the knowledge base is represented in ECLiPSe’s Prolog dialect. Algorithms
and queries run against the SKB are also written in Prolog. Important aspects of Prolog
and ECLiPSe for this thesis are discussed in the next section.

The SKB comes with a client library for C programs. For maximum expressiveness, the
queries are written as C strings.

3.3 ECLiPSe

The language used to write ECLiPSe programs is a superset of Prolog. In the following
I present the most important concepts for this thesis and refer to the ECLiPSe Tutorial
Introduction [6] for a more complete description.

CHAPTER 3. BACKGROUND 10

3.3.1 Basics

Prolog only has a single data type called a term. In ECLiPSe they are built from numbers,
strings, atoms, lists and structures (also called compound terms). Numbers, strings and
lists are self explanatory. Atoms are symbolic constants (similar to an enumeration type
constant). They are either single quoted or start with a lower case letter. Structures are
aggregated terms e.g.

author(george, orwell)

book(’romeo and juliet’, author(william, shakespeare), tragedy)

They have a name and a fixed number of arguments called their aritiy. The combination
of a structure’s name and aritiy is called its functor. It is often written as name/arity e.g.
author/2 or book/3. For improved readability, ECLiPSe allows to give names to the
arguments. We first specify a template with

:- local struct(author(firstname, lastname)).

We can now write author/2 structures like this:

author{

firstname:george,

lastname:orwell

}

Named structures support inheritance. By sepcifying a template like

:- local struct(book(title, author:author, genre)).

We can conveniently write book/3 structures like this:

book{

title:’the lord of the rings’,

firstname:’j.r.r.’,

lastname:’tolkien’,

genre:fantasy

}

Alternatively we can still specify the author with the author field and a nested author/2

structure.

CHAPTER 3. BACKGROUND 11

In Prolog two terms are equal if they can be pattern matched. An important concept
in Prolog is unification. It is an extension of pattern matching, that allows the terms to
contain variables. A variable in Prolog starts with an upper case letter or an underscore.
Two terms can be unified if they are either equal or if the contained variables can be
instantiated with values such that the terms become equal.

Prolog programs are based on predicate invocations. If we invoke a predicate, ECLiPSe
will return its truth value, e.g.

:- member(2,[1,2]).

Yes

Such a predicate invocation is called a goal.

A predicate is defined by one or several clauses. A clause is either a fact or a rule.
Facts are clauses without a body like mouse(jerry). They simply state that some-
thing is true. Rules are clauses that make the truth value dependent on other goals like
animal(X) :- mouse(X). Goals can be combined with a comma (conjunction) or a
semicolon (disjunction).

To see how ECLiPSe finds solutions for goals, we look at the goal animal(jerry).
Assume the following definitions.

animal(X) :- cat(X).

animal(X) :- mouse(X).

cat(tom).

mouse(jerry).

ECLiPSe tries to unify the goal with each of the animal/1 clauses in order. Both clauses
can be unified with the goal by instantiating X with jerry. ECLiPSe chooses the first
clause and remembers that there would be other choices. It creates a choice-point. Now
it has to find a solution for cat(jerry). As there are no clauses of the cat/1 predi-
cate that unify with the goal, the process reaches a dead end. If there wouldn’t be any
previous choice-points, ECLiPSe would now report that there are no solutions. How-
ever, there is a choice-point to which it can backtrack and make a different choice. When
choosing the second clause of animal/1, it can make the initial goal true: It again in-
stantiates X with jerry. As mouse(jerry) is a fact, the goal is true.

If we put variables in a goal, ECLiPSe will report instantiations that make the goal true:

CHAPTER 3. BACKGROUND 12

:- animal(X).

X = tom

Yes (solution 1, maybe more)

If we ask for more solutions, ECLiPSe will backtrack and enumerate all solutions. We
can ask for all solutions at once by using the built-in predicate findall/3. If we are not
interested in the values that make the goal true, we can do the following:

:- animal(_).

Yes

If we do not specify a value for a name in a structure, ECLiPSe assumes we do not care.
The following two are equivalent:

author{

lastname:rowling

}

author{

firstname:_,

lastname:rowling

}

3.3.2 Constraints

ECLiPSe includes an interval constraint solver library. It allows to constrain variables
to ranges of integers or even real numbers. However, in this thesis we only deal with
integer constraints. To constrain a variable to an interval we can write

:- X :: 1..3.

X = X{1..3}

Yes

As we can see, ECLiPSe does not enumerate possible values for constrained variables
until we ask it to do so with labeling/1:

CHAPTER 3. BACKGROUND 13

:- X :: 1..3, labeling([X]).

X = 1

Yes (solution 1, maybe more)

We can also use arithmetic constraints to relate variables:

:- X :: 1..3, Y #> X, Y #< 3.

X = 1

Y = 2

Yes

We can also get information about the domain of variables. To e.g get the bounds we
can do:

:- X :: 1..3, get_bounds(X, Min, Max).

X = X{1..3}

Min = 1

Max = 3

Yes

However, this only gives lower and upper bounds, not information about non contin-
uous domains:

:- X :: 1..3, X #\= 2, get_bounds(X, Min, Max).

X = X{[1,3]}

Min = 1

Max = 3

Yes

We will see in Section 5.2 that there are problems which are solved much more effi-
ciently with constraints than with pure backtracking.

Chapter 4

Sockeye

On platforms that implement dynamic discovery mechanisms (cf. Chapter 2) the ADN
describing the platform could probably (at least partially) be inferred from the discov-
ered information. However, this is beyond the scope of this thesis. Also, various plat-
forms do not implement such mechanisms e.g. the PandaboardES used for this thesis.
Even on platforms that have such mechanisms, an OS often requires more informa-
tion to correctly configure the hardware. To use ADNs for hardware configuration, we
therefore need a way to produce specifications describing ADNs. Hardware specifica-
tions are typically written by hand. Thus, a language used for the purpose must be well
readable and allow a programmer to work in an efficient way. A very important feature
for efficiency is the possibility to reuse code. In the context of hardware specifications
one wants to be able to reuse specifications written for components like a particular
processor type.

The original ADN paper proposes a concrete syntax. To cater to the above require-
ments, I augmented this syntax. The resulting DSL is called Sockeye. Sockeye’s syntax
and features and their semantics are described in Section 4.1. I also built a compiler for
Sockeye and its implementation is described in Section 4.4.

A more user oriented description can be found in the Barrelfish Technical Note on Sock-
eye [16].

14

CHAPTER 4. SOCKEYE 15

4.1 Language Overview

Sockeye was designed as a DSL that is primarily written by hand as opposed to being
generated from specifications in another format. The main design goals for Sockeye
were therefore

• Readability: The produced code should be well readable such that specifications
can be understood and maintained.

• Efficiency: The developer should be able to write as little code as possible.

To achieve the first goal, Sockeye uses similar lexical conventions as C does. C is still
mostly the language of choice for systems programming. Hence, a lot of developers
writing hardware specifications should, at least to some degree, be familiar with it. The
exact conventions used are documented in Appendix A. To further improve readability
I made some changes to the ADN syntax. The resulting basic syntax along with its
semantics is described in Section 4.2.

The second goal is mainly achieved by enabling developers to reuse code. Even within
the same platform, there is potential for reusing code. This can already be seen in the
heavily simplified version of the OMAP4460 depicted in Figure 3.1. Figure 4.1 shows a
slightly modified version of the diagram, splitting it into reusable modules.

Sockeye allows one to package reusable parts into modules. These modules can then
be instantiated multiple times within the same platform specification. If placed in a
separate file, code can even be reused in other specifications. The language features
that make this possible are described in Section 4.3.

4.2 Basic Syntax

In the following the basic syntax for Sockeye is described. The differences to the orignal
ADN syntax are stated in Section 4.2.5.

I use EBNF to describe the syntax. Terminals are bold while non-terminals are italic.
The non-terminals letter, decimal and hexadecimal are self explanatory. The non-terminal
identifier represents alphanumerical strings starting with a letter. Additionally, dashes
and underscores are allowed. The exact definitions for these non-terminals can be
found in Appendix A.

CHAPTER 4. SOCKEYE 16

Peripherals_1Peripherals_1

UART3UART3 SDRAMSDRAM

Peripherals_2Peripherals_2

ROMROM

ROMROM RAMRAM

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CORTEXA9_1

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CORTEXA9_1

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CORTEXA9_2

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CORTEXA9_2

00000000

4002FFFF

00000000

4002FFFF

40030000

4003BFFF

40030000

4003BFFF

4003C000

FFFFFFFF

4003C000

FFFFFFFF

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local_Interconnect

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local_Interconnect

60000000

7FFFFFFF

60000000

7FFFFFFF

32001000

320013FF

32001000

320013FF

60000000

7FFFFFFF

32001000

320013FF

L2

60000000

7FFFFFFF

32001000

320013FF

L2

00000000

54FFFFFF

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55020000

5502FFFF

55004000

FFFFFFFF

55004000

FFFFFFFF

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55004000

FFFFFFFF

MIF

00000000

54FFFFFF

55000000

55003FFF

55020000

5502FFFF

55004000

FFFFFFFF

MIF

48020000

480203FF

48020000

480203FF

55000000

55FFFFFF

55000000

55FFFFFF

80000000

BFFFFFFF

80000000

BFFFFFFF

48020000

480203FF

55000000

55FFFFFF

80000000

BFFFFFFF

L3

48020000

480203FF

55000000

55FFFFFF

80000000

BFFFFFFF

L3

Figure 4.1: Simplified modular view of the Texas Instruments OMAP 4460 SoC

Additionally, there are examples for every syntactic construct. The examples are all
taken from the simpliefied version of the OMAP4460 depicted in Figure 4.1.

4.2.1 Node Declarations

A node declaration contains one or more identifiers and the node specification. If sev-
eral identifiers are given, an equivalent node is declared for each of them. The order in
which the nodes are declared does not matter.

Syntax

node_decl=
{

identifier is node_spec
∣∣∣ identifier

{
, identifier

}
are node_spec

}

CHAPTER 4. SOCKEYE 17

Example

SDRAM is ...

Peripherals_1,

Peripherals_2 are ...

4.2.2 Node Specifications

A node specification consists of a type, a set of accepted address blocks, a set of address
mappings to other nodes, a set of reserved address blocks and an overlay. All of these
are optional. Not specifying a set is equivalent to specifying an empty set. The type
does not have formal semantics but is used to attach meta-data to nodes. Currently
there are three types: core, device and memory. A fourth internal type other is given
to nodes for which no type is specified. The core type designates the node as a pro-
cessor core. The device type specifies that the accepted addresses are device registers
while the memory type is for memory nodes like RAM or ROM. If an overlay node is
given, all addresses not captured by the accept and translate sets will be translated to
the same addresses in the overlay node. Overlays are specified as a node identifier and
a number of address bits. An overlay will span addresses from 0x0 to 0x2bits−1. The
reserved address blocks are only relevant in conjunction with overlays and are used to
exclude specific addresses from the overlay.

Syntax

node_spec=
[

type
] [

accept
] [

map
] [

reserved
] [

overlay
]

type= core | device |memory

accept= accept [
{

block_spec
}

]

map=map [
{

map_spec
}

]

reserved= reserved [
{

block_spec
}

]

overlay=over identifier/decimal

CHAPTER 4. SOCKEYE 18

Example

SDRAM is memory accept [...]

L3 is map [...]

Local_Interconnect is reserved [...] over L3/32

4.2.3 Block Specifications

To talk about a continuous range of addresses at once instead of having to specify each
address separately, Sockeye offers address blocks. A block is specified by its start and
end address. If the start and end address are the same, the end address can be omitted.
Sockeye also supports specifying a block as its base address and the number of address
bits the block spans: A block from 0x0 to 0xFFF with a size of 4kB can be specified as
0x0/12. Addresses are specified as hexadecimal literals.

Syntax

block_spec= hexadecimal
[
– hexadecimal

∣∣∣ /decimal
]

Example

UART3 is accept [0x0-0xFFF]

UART3 is accept [0x0/12] // same as 0x0-0xFFF

ROM is accept [0x44] // same as 0x44-0x44

4.2.4 Map Specifications

A map specification is a source address block, a target node identifier and optionally
a target base address to which the source block is translated within the target node.
If no target base address is given, the block is translated to the target node starting at
0x0. Multiple translation targets can be specified by giving a comma-separated list of
targets.

CHAPTER 4. SOCKEYE 19

Syntax

map_spec= block_spec to identifier
[
at hexadecimal

] {
, identifier

[
at hexadecimal

]}

Example

/*

* Translate 0x60000000-0x7FFFFFFF

* to L3 at 0x80000000-0x9FFFFFFF:

*/

L3 is map [0x60000000/29 to L3 at 0x80000000]

/*

* This is the same as 0x80000000/30 to SDRAM at 0x0:

*/

L3 is map [0x80000000/30 to SDRAM]

4.2.5 Differences to the Original Syntax

The following syntax was originally proposed for ADNs:

nets=
{
N is nodes

∣∣∣ N..N are nodes
}

nodes=
[
accept [

{
blocks

}
]
] [

map [
{

maps

}
]
] [

over N
]

maps= blocks to N
[
at N

] {
, N
[
at N

]}
blocks =N–N

To improve readability and address some practical issues, the basic syntax for Sockeye
slightly differs from this. The following changes were made:

Node identifiers: Sockeye uses strings to identify nodes while the original syntax uses
natural numbers. By using strings, nodes can be given more meaningful names,

CHAPTER 4. SOCKEYE 20

which greatly improves maintainability. However, this is equivalent as a one-
to-one mapping from strings to natural numbers can easily be found (e.g. by
enumerating the strings in their alphanumerical order).

Node types: Sockeye allows to attach meta-data to nodes that is not captured by the
formal model. Currently this is restricted to node types. The type is used to
designate a node as a processor core, a memory node or a collection of device
registers. Types are purely meta-data, they do not have any formal semantics.

Overlays: The original syntax also allows to specify an overlay for a node. An overlay
is a default translation target: All addresses that are neither accepted nor explic-
itly translated are implicitly translated to the same address in the overlay target
node. However, in practice a hardware component only uses a certain amount
of bits for addresses. In Sockeye an overlay is restricted to a specified amount of
address bits. Additionally, to be able to exclude specific address regions from an
overlay, Sockeye introduces a set of reserved addresses. Neither of these changes
affect the expressiveness: By explicitly adding addresses affected by the overlay
to the translate set of a node, the node can be transformed into an equivalent
node without overlays. Conversely a finite overlay can always be expressed with
explicit translation entries. Infinite overlays do not occur with real hardware.

Default translation target address: In the original syntax, if no target base address is
given for a map specification, the address block is translated to the same block in
the target node. In Sockeye they are translated to the block of the same size start-
ing at 0x0. This was changed due to the mapping to 0x0 being used more often in
practice. Omitting the target base address is only syntactic sugar. Changing the
convention has no impact on the expressiveness of the language as the original
behaviour can still be achieved by stating the base address explicitly.

4.3 Advanced Features

The basic syntax allows to fully describe an ADN. However, apart from specifying
multiple equal nodes at once (see Section 4.2.1), it does not offer any form of code
reuse. As Figure 4.1 shows, a hardware component might appear multiple times within
a platform (like the Cortex-A9 core). Components like the Cortex-A9 MPCore are also
used across different platforms. Instead of having to respecify the same thing over

CHAPTER 4. SOCKEYE 21

and over again, a developer should be able to write such specifications once, and reuse
them. With its module and import system, Sockeye enables code reuse for exactly these
use cases.

The features enabling code reuse along with their syntax are described in the following
sections. As in Section 4.2 I use EBNF, bold terminals and italic non-terminals. An
example specification describing the simplified OMAP4460 in Figure 4.1 can be found
in Section 4.3.4.

It is important to note that all the features described in this section do not add to the
expressiveness of Sockeye. All specifications using these features can be transformed
to equivalent ones using only the basic syntax from Section 4.2. In fact, we will see in
Section 4.4 that this is exactly what the Sockeye compiler does. However, they allow
one to describe hardware with much less redundancy in the code.

4.3.1 Modules

The main constructs to enable code reuse in Sockeye are modules. A module encap-
sulates an ADN. By instantiating the module, the contained ADN can be integrated
into a larger ADN. However, just fusing the encapsulated ADN with the surrounding
one would lead to problems: If a module is instantiated twice or even if two modules
declare nodes with the same identifier, name clashes would occur. One way to resolve
them, would be to enforce globally unique names. However, this would defeat the pur-
pose of a module: A developer would than have to care about the exact contents of the
module, instead of just being able to use it. This is why, a module instantiation always
creates a new namespace nested inside the namespace it is instantiated in. To further
guarantee encapsulation, modules have a clearly defined interface in the form of ports.
Namespace boundaries can not be crossed by simply referencing nodes inside another
namespace. This is enforced by the syntax, as specifying a namespace when referencing
a node is not possible (see Sections 4.2.2 and 4.2.4). Ports allow to cross these bound-
aries. The direction in which the namespace boundary can be crossed depends on the
port type:

Input ports allow to cross a namespace boundary into a subspace. To put it differently,
an input port allows a node outside a module to forward addresses to a node
inside the module.

CHAPTER 4. SOCKEYE 22

Output ports do the opposite: They allow a node inside the module to forward ad-
dresses to a node outside the module.

A port therefore has an ingoing end (on the side from which the crossing happens) and
an outgoing end (on the side to which the crossing happens). In Figure 4.1 the ports are
marked as arrows pointing from their ingoing to their outgoing end. Arrows that point
into a module are input ports and the ones that point out of modules are output ports.

When a module is instantiated, a list of port mappings can be specified. A port mapping
creates a proxy node on the ingoing end of a port. Nodes on the ingoing side of the port
can reference the node on the other end via this proxy node. Like overlays, ports also
have a width, that specifies the size of the address range forwarded by the proxy node.

In Figure 4.1 we identified the Cortex-A9 MPCore as a potentially reusable module. Its
specifications [2] state, that it can come with one to four cores and that the address of
the private peripheral region is implementation dependent. To be able to reuse mod-
ules even across such differences, they are parametrisable. A module with parameters
is called a module template: The topology of the ADN it encapsulates depends on the val-
ues of the parameters the template is instantiated with. Module parameters are typed
and there are two types of parameters: address parameters and natural parameters. Ad-
dress parameters allow to parametrize addresses in node specifications (like the base
address of the private peripheral region of a Cortex-A9 core). Natural parameters are
used to parametrise the number of certain nodes in the encapsulated ADN. The con-
struct that makes this possible is described in the next section. Parameters can also be
passed on as arguments to module template instantiations in the module body.

A module declaration starts with the keyword module and a unique module name. An
optional list of typed parameters can be specified, making the module a template. The
module body is enclosed in curly braces and starts with the port definitions. The rest
of the body is node declarations and module instantiations. If the module has address
parameters the names of the parameters can be used wherever in the body an address
is expected. Doing arithmetic on parameters is currently not supported.

Module instantiations start with the module name and in the case of a module template
with the list of arguments. After that, the identifier of the namespace in which the
module should be instantiated has to be given, followed by an optional list of port
mappings.

CHAPTER 4. SOCKEYE 23

Syntax

mod_decl=module identifier
[
param_list

]
{
{

input_port | output_port
}

body }

param_list= (
[

parameter
{

, parameter
}]

)

parameter= param_type identifier

param_list= (
[

parameter
{

, parameter
}]

)

param_type= addr | nat

input_port= input identifier/decimal
{

, identifier/decimal
}

output_port=output identifier/decimal
{

, identifier/decimal
}

body=
{

node_decl | mod_inst
}

mod_inst= identifier
[
arg_list

]
as identifier

[
with

{
input_map | output_map

}]
argument= decimal | hexadecimal | identifier

arg_list= (
[

argument
{

, argument
}]

)

input_map= identifier > identifier

output_map= identifier < identifier

CHAPTER 4. SOCKEYE 24

Example

/*

* Module for a Cortex-A9 core

* The address of the private peripheral region is parametrised

*/

module CortexA9-Core(addr periphbase) {

input CPU/32

output Interconnect/32

Peripherals is device accept [0x0/13]

CPU is map [

periphbase/13 to Peripherals

]

over Interconnect/32

}

/*

* Instantiate the module and map the ports

*/

CortexA9-Core(periphbase) as Core with

CORTEXA9_1 > CPU

Local_Interconnect < Interconnect

4.3.2 Templated Identifiers

In the case of the CortexA9-MPCore module in Figure 4.1, the number of cores can vary.
We would therefore give the CortexA9-MPCore module a parameter of type nat that
controls the number of cores. Now we need to be able to say that we want to instan-
tiate the CortexA9-Core module as many times as there should be cores. Templated
identifiers allow us to do this.

There are two forms of templated identifiers: interval templates and simple templates. A
templated identifier is called an interval template if it contains one or several intervals
e.g.

CHAPTER 4. SOCKEYE 25

CORTEXA9_{[1..2]}

It represents the set of identifiers, that is obtained when replacing the intervals with all
possible combinations of their members. In the above example these are

CORTEXA9_1

CORTEXA9_2

In a system that has two Cortex-A9 MPCore modules with two cores each, we might
want to number them with two indices, one for the MPCore module and one for the
core:

CORTEXA9_{[1..2]}_{[1..2]}

This interval template would represent the following four identifiers:

CORTEXA9_1_1

CORTEXA9_1_2

CORTEXA9_2_1

CORTEXA9_2_2

Interval templates can be used as identifiers in node and port declarations, and as
namespace identifiers in module instantiations. In each of these cases it would be
equivalent to repeat the syntactic construct for all of the identifiers represented by the
interval template. Optionally the intervals can be assigned to index variables that can
then be used in the corresponding syntactic construct. Writing

CORTEXA9_{c in [1..2]} are map [0x48240000 to Peripherals_{c}]

is equivalent to writing

CORTEXA9_1 is map [0x48240000 to Peripherals_1]

CORTEXA9_2 is map [0x48240000 to Peripherals_2]

An identifier template that just uses an already defined index variable but does not it-
self contain new intervals is called a simple template. Simple templates can be used in
any place a node identifier is expected. This includes the places where interval tem-
plates can be used, identifiers of translation destination nodes, and overlays. Identifier
templates can not be used in module parameter or index variable names.

While this already allows one to save a few lines of code, there is a more powerful use
case: When an interval template is used inside a module, the natural parameters of the
module can be used as interval limits. To come back to the use case from the beginning

CHAPTER 4. SOCKEYE 26

of this section, assume we have the following module declaration for a simple version
of a single Cortex-A9 core:

module CortexA9-Core {

input CPU/32

CPU is core map [...]

}

We can now declare a module for the Cortex-A9 MPCore with a variable number of
cores:

module CortexA9-MPCore(nat cores) {

CortexA9-Core as Core_{c in [1..cores]} with

CORTEXA9_{c} > CPU

}

The number of times the CortexA9-Core module is instantiated depends on the pa-
rameter cores. By giving the index variable a name, we can make the names of the
proxy nodes for the processors depend on the module instance: The processor from the
first CortexA9-Core module is mapped to CORTEXA9_1, the one from the second one to
CORTEXA9_2 and so on. This allows to parametrise a module over the number of times
certain nodes or other modules are contained in it.

Syntax

interval_templ= identifier{
[
var in

]
interval}

[
interval_templ | simple_templ | identifier

]
simple_templ= identifier{var}

[
simple_templ | identifier

]
var= identifier

limit= decimal | identifier

interval= [limit..limit]

CHAPTER 4. SOCKEYE 27

4.3.3 Imports

With modules and templated identifiers partial specifications are reusable inside the
same file and therefore the same specificiation they were defined in. Imports allow
to put modules into separate files, such that code can also be reused across different
specifications in a library-like fashion. Furthermore, they can help improve readability
by giving the ability to split large specifications across several files. Imports have to be
specified at the very top of a Sockeye file. An import will cause all modules from the
specified file to be loaded. Anything declared outside a module will be ignored.

Syntax

import= import
{

letter | /
}

4.3.4 Sockeye Files

Finally, a complete Sockeye file consists of imports, module declarations and the speci-
fication body (node declarations and module instantiations).

Syntax

sockeye=
{

import
} {

mod_decl
} {

node_decl | mod_inst
}

Listing 4.1 shows a Sockeye specification that describes the simplified OMAP4460 de-
picted in Figure 4.1.

module CortexA9-Core(addr periphbase) {

input CPU/32

output Interconnect/32

Peripherals is device accept [0x0/13]

CPU is map [

periphbase/13 to Peripherals

]

over Interconnect/32

CHAPTER 4. SOCKEYE 28

}

module CortexA9-MPCore(nat cores, addr periphbase) {

output Interconnect/32

CortexA9-Core(periphbase) as Core_{c in [1..cores]} with

CORTEXA9_{c} > CPU

Interconnect < Interconnect

}

module A9-Subsystem {

output Interconnect/32

ROM is memory accept [0x0-0xBFFF]

Local_Interconnect is map [

0x40030000 to ROM

]

over Interconnect/32

CortexA9-MPCore(2, 0x48240000) as MPU with

Local_Interconnect < Interconnect

}

module M3-Subsystem {

input MIF/32

output L3/32

ROM is memory accept [0x0/14]

RAM is memory accept [0x0/16]

MIF is map [

]

over L2

L2 is map [

CHAPTER 4. SOCKEYE 29

0x32001000/10 to L3 at 0x48020000

0x60000000/29 to L3 at 0x80000000

]

}

UART3 is device accept [0x0/10]

SDRAM is memory accept [0x0/30]

L3 is map [

0x48020000/10 to UART3

0x55000000/24 to M3_MIF at 0x55000000

0x80000000/30 to SDRAM

]

A9-Subsystem as A9_SS with

L3 < Interconnect

M3-Subsystem as M3_SS with

M3_MIF > MIF

L3 < L3

Listing 4.1: Sockeye specification for a simplified OMAP4460

Appendix B shows the EBNF specification for the whole syntax in one listing.

4.4 Compiler

In the previous sections I described the Sockeye hardware description language. To be
able to use the Sockeye specifications for hardware configuration, I also implemented
a compiler. The current implementation only features a backend for generating ADN
representations for use in Barrelfish’s SKB. However, the design makes it easy to add
additional backends. This allows to extend the compiler to e.g. generate code that can
be fed into an automated theorem prover. One could then prove certain properties
about hardware as proposed in the original work about ADNs. In this section I de-
scribe the transformations and checks the compiler performs before running the code
generator. The SKB representation for ADNs is discussed in detail in Chapter 5.

CHAPTER 4. SOCKEYE 30

4.4.1 Implementation

The compiler first parses the specification and resolves the imports. It then makes sure
that the described ADN is correct. Namely it checks two properties:

• Uniqueness of node identifiers

• Referential integrity

These properties are easy to check for specifications only using basic syntax. However,
when advanced features are used, this is difficult: With templated identifiers aliasing
can occur and the presence of ports complicates checking that a referenced node actu-
ally exists. This is why the compiler transforms the specifications and translates the
advanced syntactical constructs into equivalent basic constructs. The transformation
from Sockeye to “Basic Sockeye” is done in several separate steps:

Parsing: Checks syntax and resolves imports.

Type checking: Ensures type safety of the module parameters.

Module template instantiation: Turns module templates into fully defined modules
by resolving parameter values. This then allows to instantiate identifier templates
and check that all identifiers are unique.

Module instantiation: Instantiates modules and checks that all referenced nodes exist.

Note that the abstract syntax produced from this transformation differs from the basic
syntax in one point: Node identifiers are not simply strings, but a name qualified by a
list of namespaces (both represented by strings). This is necessary to ensure the unique-
ness of identifiers in the presence of module instantiations. A string-only representation
could have been achieved by e.g. concatenating all the strings with a separator in be-
tween. However, the chosen solution is more practical as one does not need to parse
the string to separate out the parts.

In the following, the most important transformations and checks of each step are de-
tailed. For a comprehensive list of checks performed by the compiler, see Appendix C.

Parsing As in every compiler, the parser checks that the syntax is correct and creates
an abstract syntax tree (AST). It then recursively resolves the imports and parses the
imported files. The resulting set of ASTs is merged into a single one.

CHAPTER 4. SOCKEYE 31

Type Checking Before any transformations can be done, the AST needs to be type
checked. The type checker first makes sure that all module names are unique. This is
especially important as the definitions can come from several files, that are not neces-
sarily all written by the same developer. It then goes on to check that all referenced
parameters and index variables are actually defined and all parameters are used in ac-
cordance with their type. It also checks that all instantiated modules are defined and
that they are instantiated with the correct number of arguments.

Module Template Instantiation In the final AST, node identifiers are represented by
a name and a list of namespaces. Additionally all module instantiations create a new
namespace. This means that we only need to check uniqueness of identifiers within the
same module. However, as module parameters can be used in identifier templates, this
check is still hard to perform. Depending on the values of the parameters, aliasing can
occur: The templates CPU_{[1..c]} and CPU_{[4..d]} for example might represent
overlapping sets of identifiers. After the parameter values are resolved, uniqueness is
much easier to check.

In the module instantiation stage, module templates are transformed to fully defined
modules as follows: For each combination of argument values with which a module
template is instantiated, the compiler creates a new module. The body of the module is
the same as in the module template, but all occurrences of the template parameters are
replaced with their values. This transformation then allows to instantiate the identifier
templates in the module body. This allows for easy checking whether all identifiers are
unique.

Module Instantiation After checking that all node identifiers are indeed unique, the
compiler still needs to ensure that all referenced nodes are actually declared. For nodes
that are explicitly declared, this can easily be verified. However, with modules, the
referenced nodes could also be proxy nodes, implicitly declared by port mappings.
To be able to also check the integrity of such references, the compiler instantiates all
modules. It qualifies the node names with the nested namespace they are in and creates
explicit node declarations for the proxy nodes. With all nodes now explicitly declared,
it is easy to verify referential integrity.

CHAPTER 4. SOCKEYE 32

4.5 Evaluation

The original work on ADNs already demonstrates that real systems can be modelled
with the syntax proposed there. Sockeye’s syntax has the same expressiveness. How-
ever, it adds features to reuse code and describe systems more efficiently. To evaluate
Sockeye, we first look at the code complexity of Sockeye specifications. We then com-
pare Sockeye to device trees, the format for hardware specifications used in Linux.

To implement the hardware configuration tasks (Chapter 6), I needed specifications for
the OMAP4460. I wrote those using Sockeye. The specification for the OMAP contains
under 1000 lines of code1. Note that the focus for the specifications I wrote, was on the
Cortex-A9 subsystem and the devices relevant for the use cases in Chapter 6. There-
fore, these specifications do not yet cover the complete system. For the same reason,
only the Cortex-A9 MPU was described as a reusable module. The module is about
40 lines of code, which can be shared with other specifications containing the same
mulitprocessor. One could do the same for other parts of the system (e.g. the Cortex-
M3 subsystem), to increase reuseability. The module for a single A9 core is about 20
lines of code. On the OMAP there are only two of these cores. The reduction in code
from reusing this module in the OMAP specifications instead of describing each core
separately, is therefore minor. However, other SoCs feature considerably more cores.
E.g. the Cavium ThunderX, an ARMv8 based server SoC, can have up to 96 cores in
a two socket configuration [4]. With module parameters and templated identifiers, the
amount of code two write is the same, no matter whether a system has 1 or 1000 cores.

A device tree for the OMAP [10] has over 5000 lines of code2. Though the Sockeye
specifications are incomplete, it is unlikely that adding the few missing parts would
blow up the size by a factor of 5. However, the main advantage of Sockeye over device
trees is the way hardware is modelled. As mentioned in Chapter 2, device trees as-
sume physical addresses to be globally unique, making it hard to model contemporary
hardware with them. Sockeye on the other hand, models hardware using ADNs, which
capture the complex interactions between different address spaces. Additionally ADNs
have precise semantics, while device trees are just a file format. Sockeye specifications,
unlike device trees, can therefore also be used for formal reasoning about hardware.

1The lines of code were counted by looking at the total number of lines in the files. These numbers
therefore include blank lines and comments.

2For the numbers to be comparable, the lines were counted the same way as above.

CHAPTER 4. SOCKEYE 33

4.6 Summary

Sockeye is a DSL to describe hardware, based on the syntax proposed for ADNs. To
make the language practical, I altered this syntax slightly and added features that allow
the reuse of code. The expressiveness of the resulting concrete syntax for Sockeye is
equivalent to the one from the ADN paper. To use Sockeye specifications for this thesis,
I also implemented a compiler. It ensures the correctness of the described ADN by
checking uniqueness of node identifiers and referential integrity. By using ADNs as the
hardware model, Sockeye specifications can capture the complexity of contemporary
hardware. The precise semantics of ADNs allow for formal reasoning about hardware
based on the specifications. Both of these features make Sockeye a more powerful tool
to describe hardware than other specification formats like device trees.

Chapter 5

SKB Schema

ADNs carry low-level knowledge about the system’s address spaces (see Section 3.1).
In Barrelfish such knowledge is stored in the SKB where it can be accessed with high-
level, declarative algorithms (cf. Section 3.2). To extend the SKB’s knowledge to address
spaces, I designed a Prolog representation for ADNs. In database terms, such a repre-
sentation is also called a schema. In this chapter I discuss the design of the SKB schema
for ADNs and how it can be queried.

5.1 Representation

The design of the SKB schema was guided by two things:

Queries: The main operation on ADNs is address resolution. The schema needs to
support resolution queries that are efficient enough to not have a huge impact on
system performance.

Code Generation: Generating the representation from the Sockeye compiler’s abstract
syntax (see Section 4.4) should be as straight forward as possible.

I therefore started out with an exact representation of the abstract syntax for Sockeye.
Using strings as node identifiers, qualified by the list of namespaces the node is in,
also proved useful for querying ADNs: Querying a node using the same meaningful
name as in the specifications, results in much more readable queries than using natural
numbers. To further improve query readability, the Prolog representation uses named
fields for the structures modelling the ADN (see Section 3.3). An additional structure

34

CHAPTER 5. SKB SCHEMA 35

was added for names. While not directly part of the representation, they are a central
concept in ADNs. They are needed to express resolution queries: The resolution func-
tion is defined in terms of the accepted names set and the decode relation. The decode
relation is in turn also defined on names. The name/3 structure therefore is used as the
input and output type for queries. The template specifications for the named structures
are shown in Listing 5.1.

:- local struct(node(

id:node_id,

spec:node_spec

)).

:- local struct(node_id(

name,

namespace

)).

:- local struct(node_spec(

type,

accept,

translate

)).

:- local struct(map(

src_block,

dest_node,

dest_base

)).

:- local struct(block(

base,

limit

)).

:- local struct(name(

node_id:node_id,

address

)).

Listing 5.1: Prolog representation for ADNs

The represented ADN is defined by the node/2 predicate. Recall from Section 3.3 that
predicates are defined by clauses being either facts or rules. In our case we assert
node/2 facts to state that all these nodes exist and make up the represented ADN.

Note the absence of the overlay and reserved properties in node_spec/3. An over-
lay is a default translation target and the reserved set specifies addresses explicitly not
covered by the overlay. An equivalent node without an overlay or reserved addresses
can be obtained as follows: Find all addresses covered by the overlay that are neither
accepted, reserved or explicitly translated. Then, for each of them, add an entry to the
translate set that translates the address to the same address in the overlay node. The
Prolog backend for the Sockeye compiler implements this transformation on address
block level. Having to consider only the translate sets of the nodes, simplifies the im-

CHAPTER 5. SKB SCHEMA 36

plementation of the decode relation.

In the next section I discuss the implementation of resolution queries on top of this
represenation.

5.2 Queries

To implement queries to the SKB representation of an ADN we need Prolog implemen-
tations of the definitions in Section 3.1:

• Accepted names set

• Decode relation

• Resolution function

Prolog programs are based on predicates. To represent a set we can implement a pred-
icate that is true for all elements of the set and false for everything else. Similarly
we can represent binary relations with predicates of arity two that are true when the
pair of arguments is in the relation. I implemented a predicate accepted_name/1 that
represents the set of accepted names and a predicate decode_step/2 that represents
the decode relation. The predicate decodes_to/2 then represents the reflexive tran-
sitive closure of the decode relation by checking the arguments for equality and call-
ing decode_step/2 recursively. The resolve/2 predicate is just the conjunction of
decodes_to/2 and accepted_name/1 invoked on the second argument.

To illustrate how these predicates can be used, we again look at a simplified version
of the OMAP4460. The ADN for it is shown in Figure 5.1. For simplicity we ignore
namespaces in this example.

To test whether a name is accepted we pose the query

:- accepted_name(

name{

name:’CORTEXA9_1’,

address:0x2A

}

).

No

CHAPTER 5. SKB SCHEMA 37

0x0000

0x1FFF

0x0000

0x1FFF

0x000

0x3FF

0x000

0x3FF

0x00000000

0x3FFFFFFF

0x00000000

0x3FFFFFFF

0x0000

0x1FFF

0x0000

0x1FFF

0x0000

0xBFFF

0x0000

0xBFFF

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CortexA9_1

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CortexA9_1

48242000

FFFFFFFF

48242000

FFFFFFFF

48240000

48241FFF

48240000

48241FFF

00000000

4823FFFF

00000000

4823FFFF

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CortexA9_2

48242000

FFFFFFFF

48240000

48241FFF

00000000

4823FFFF

CortexA9_2

00000000

4002FFFF

00000000

4002FFFF

40030000

4003BFFF

40030000

4003BFFF

4003C000

FFFFFFFF

4003C000

FFFFFFFF

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local_Interconnect

00000000

4002FFFF

40030000

4003BFFF

4003C000

FFFFFFFF

Local_Interconnect

48020000

480203FF

48020000

480203FF

80000000

BFFFFFFF

80000000

BFFFFFFF

48020000

480203FF

80000000

BFFFFFFF

L3

48020000

480203FF

80000000

BFFFFFFF

L3

Peripherals_1 Peripherals_2

ROM

UART3 SDRAM

Figure 5.1: Simplified ADN of the Texas Instruments OMAP 4460 SoC

To test whether a name resolves to a name in a specific node we can use the following
query:

CHAPTER 5. SKB SCHEMA 38

:- resolve(

name{

name:’CORTEXA9_1’,

address:0x80000000

},

name{

name:’SDRAM’

}

).

Yes

However, if we add variables to our queries, ECLiPSe will try to find instantiations that
make the given goal true. We might want to use the following query to find an address
in node ’CORTEXA9_1’ that resolves to some address in node ’UART3’:

resolve(

name{

name:’CORTEXA9_1’,

address:A

},

name{

name:’UART3’

}

).

With a plain Prolog implementation, ECLiPSe would enumerate all possible solutions
for A by backtracking. However, using backtracking on addresses in the 32bit address
space of the Cortex-A9 cores creates 232 choice-points. This brute-force approach is
highly inefficient and with larger address spaces it gets even worse.

Section 3.3 discusses how ECLiPSe allows to constrain variables to intervals and relate
variables with arithmetic constraints. We can use this functionality for a more efficient
implementation: Each entry in the translate set of a node maps a block of addresses to a
block in another node. Instead of creating choice-points for all these addresses, we can
constrain our variable to be in the source block. We then need an arithmetic constraint
that correctly relates the source address to the target address. With this approach we
only create a choice-point for each entry in the translate set. In the degenerate case
where all the entries translate exactly one address, this is equivalent to a brute-force

CHAPTER 5. SKB SCHEMA 39

search. However, in real hardware blocks almost never contain just one address. Often
they are even the size of several kilobytes and larger.

When using constraints, ECLiPSe finds the domain for A. With the built-in predi-
cate labeling/1 we could now enumerate the addresses. Alternatively, by using e.g.
get_bounds/3 we can get the base and limit of the address range at which UART3 is
seen at the first Cortex-A9 core.

The SKB module implemented for this thesis includes a second version of the resolve/2
predicate, which allows to write queries about address ranges. Instead of taking name/3
structures as arguments, it operates on region/4 structures. It is a wrapper around the
basic resolve/2 predicate and takes care of the conversion between names and re-
gions. The template for the region/4 structure is shown in Listing 5.2.

:- local struct(region(

node_id:node_id,

base,

size

)).

Listing 5.2: Prolog representation for ADN regions

If we are interested in the region UART3 is seen at from CORTEXA9_1 rather than single
addresses, we can rewrite the previous query as follows:

:- resolve(

region{

name:’CORTEXA9_1’,

base:B,

size:S,

},

region{

name:’UART3’

}

).

B = 0x48020000

S = 0x3FF

Yes

CHAPTER 5. SKB SCHEMA 40

We can now use this information to e.g. map the device into the virtual address space
of a driver.

5.3 Evaluation

The Prolog representation and predicates for ADNs presented in this chapter are in-
tended to be used in SKB queries. These queries should be easy to write and well
readable to maximise maintainability of the code. Furthermore they need to allow
expressive enough queries to be helpful in hardware configuration scenarios. In the
following I give two examples of such queries to illustrate that this is possible.

At the end of the last section, we have already seen how the address region a node is
seen at by another node can be found. This is a very common use case for hardware
configuration. By strategically placing variables in the a resolve/2 invocation one
can also write more complex queries. To e.g. generate a memory map as seen from a
specific core, the following goal can be used in a findall/3 invocation:

resolve(

region{

name:’CORTEXA9_1’,

base:B,

size:S,

},

region{

name:DestName

}

).

The following query would find a shared memory frame of at least 4KB accessible from
both Cortex-A9 cores:

CHAPTER 5. SKB SCHEMA 41

SharedRegion = region{

name: ’SDRAM’,

size: Size

},

Size #=> 4096,

resolve(

region{

name:’CORTEXA9_1’,

base:A9Base

},

SharedRegion

),

resolve(

region{

name:’CORTEXM3_MIF’,

base:M3Base

},

SharedRegion

).

As we will see in Chapter 6, these two queries already cover more use cases than needed
for this thesis. However, even more complex queries could be constructed with the
above building blocks.

Evaluating performance in terms of execution time does not make sense outside the
context of a concrete use case: First of all, the time a query takes to execute depends on
the complexity of the query and the ADN it is executed on. Furthermore, acceptable
execution times vary from use case to use case and also depend on how often a query
is. I therefore do not provide measurements here, but instead evaluate the performance
in the context of the use cases in Chapter 6.

5.4 Summary

For Barrelfish to be able to access the address space knowledge provided by ADNs,
they need to be represented in the SKB. To facilitate code generation from Sockeye, I
kept this representation as close as possible to the abstract syntax of the Sockeye com-

CHAPTER 5. SKB SCHEMA 42

piler. On top of this representation I then implemented Prolog predicates to support
resolution queries. By using constraints on address variables, the amount of backtrack-
ing required to execute resolution queries is reduced. All queries needed for this thesis
can be constructed using resolution queries.

Chapter 6

Hardware Configuration in Barrelfish

For an OS to correctly configure the hardware it is running on, it first of all needs in-
formation about the hardware. There are several standards for an OS to retrieve such
information at runtime (e.g. ACPI or PCI). However, SoCs tend not to implement these
standards. Instead they rely on static specifications of their available devices and ad-
dress space layout. The goal of this thesis is to show that ADNs can serve as such a
specification and be used to configure hardware in an OS.

I first make the case that ADNs can be used to generate build time artefacts by statically
generating kernel page tables. I then demonstrate, that ADNs can be used to config-
ure hardware at runtime. I extended Barrelfish’s device manager to discover available
devices and cores from an ADN. Furthermore, I use them to retrieve the necessary
address space information to start drivers. This allows Barrelfish to manage devices
nearly platform independent.

As a test platform I used the PandaboardES. It features a Texas Instruments OMAP4460
SoC. Barrelfish currently has support for the two ARMv7 Cortex-A9 cores.

6.1 Preliminaries

This section is a brief overview of some concepts and system services relevant to hard-
ware configuration in Barrelfish. I first give a quick overview over Barrelfish’s arch-
tecture called the multikernel and how resources are managed. For more information
about Barrelfish’s architecture I refer to the original work about the multikernel by Bau-

43

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 44

mann et al. [3]. I then describe the coordination and synchronisation service that is used
in device management. Finally I give an introduction to Barrelfish’s device manager.

6.1.1 CPU Drivers

Barrelfish implements the multikernel architecture. This means, that each processor
core runs a separate kernel. These kernels are referred to as CPU drivers. OSs with
a monolithic architecture (e.g. Linux) incorporate most of their functionality into the
kernel. CPU drivers in Barrelfish behave more like device drivers: They only abstract
the necessary details specific to a core type to export an architecture independent in-
terface to the system. This interface only includes privileged operations like page table
manipulations or interrupt handling. The CPU driver also enforces resource access
restrictions via capabilities. All other functionality is pushed to user space services.

6.1.2 Capabilities

Barrelfish uses capabilities to manage resources. A capability can be seen as a key that
grants access to a certain resource. Capabilities in Barrelfish are typed according to the
type of resource they grant permissions to. The most important ones for this thesis
are device frame capabilities, which grant access to memory mapped device registers.
When a driver wants to access a memory mapped device, it needs to map the registers
into its virtual address space. To do so it needs to hand the CPU driver a correspond-
ing capability when requesting the mapping. On ARMv7, drivers get the necessary
capabilities from the device manager.

6.1.3 Octopus

I already introduced the SKB in Section 3.2 as Barrelfish’s central system service that
allows it to run high-level reasoning algorithms. On top of it Octopus is implemented.
It provides synchronisation and coordination facilities across the system. The core of
Octopus is a key-value storage engine. Clients can add and delete data or search for
specific records. Octopus also features a publish-subscribe mechanism: Callbacks for
changes to records that match a supplied template can be registered. Octopus will then

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 45

notify the subscribers whenever one of these records is added or deleted by calling the
supplied function.

There is a client library for Octopus written in C. However its functionality can also be
accessed from Prolog code executed in the SKB.

Zellweger et al. describe Octopus in more detail [23].

6.1.4 Kaluga

Device management in Barrelfish is event based: The device manager, Kaluga, uses
the publish-subscribe mechanism offered by Octopus to get notified when devices and
cores are discovered or removed. On x86 based platforms ACPI and PCI drivers add
the Octopus records that are then consumed by Kaluga.

The PCI driver discovers devices connected over the PCI bus. It adds records for the
devices it finds to Octopus. Information about available PCI device drivers is stored
in the SKB. When a device is discovered, Kaluga queries the driver database to find an
appropriate driver and starts it. The PCI driver then supplies the device driver with the
required device frame capabilities. Being responsible for the PCI address space layout,
it has the required knowledge to do so.

Records about available cores are added by the ACPI driver. When a new core is discov-
ered, Kaluga starts a special driver called a coreboot driver. This driver in turn queries
the SKB for the correct CPU driver binary. After that, it sets up the necessary data
structures (e.g. kernel page tables). It then loads the CPU driver binary and starts the
core.

The PandaboardES has no dynamic discovery mechanisms. For cores, Kaluga mimics
the dynamic discovery behaviour by adding the necessary Octopus records itself. The
information about available cores comes from static facts in the SKB. I changed this to
use information from the ADN. For devices the current solution is more crude: The
device drivers Kaluga should start, and the resources they need, are hardcoded in plat-
form dependent device management code. I show that ADNs can be used to reduce the
amount of this code towards unification of device management across platforms and
architectures.

More information about Kaluga can be found in the Barrelfish technical note about
device drivers [15].

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 46

6.2 Generating Kernel Page Tables

Barrelfish first starts on a single core called the bootstrap core. The CPU driver for this
core is started by the bootloader. It then bootstraps the rest of the system. On ARMv7
all cores initially run with their MMUs disabled. Before a CPU driver can start on a core,
its MMU needs to be configured with appropriate page tables. The CPU driver needs
access to main memory and certain devices in the system e.g. interrupt controllers and
system timers. They need to be mapped into the kernel’s virtual address space.

For the bootstrap core, the setup of these page tables is currently hardcoded in C. To
correctly set up the page tables, this code needs knowledge about the system’s address
spaces: It needs the physical addresses (as seen by the core) of main memory and the
necessary devices. These addresses can vary from platform to platform.

For this thesis I removed the platform dependent C code that sets up the kernel page
tables at runtime. Instead, the data structures are statically generated. The hardcoded
knowledge about address spaces is replaced by queries to the ADN for the platform.

6.2.1 Implementation

Chapter 5 discusses the representation of ADNs in the SKB and how they can be queried.
By including ECLiPSe in the toolchain for building Barrelfish, we can basically run a
minimal version of the SKB at compile time. This allows for the SKB implementation
of ADNs to also be used for static code generation. The “offline SKB” includes the
ADN representation for the OMAP generated from Sockeye. Additionally, the driver
database for the OMAP is loaded. This database contains meta-information about the
CPU driver for the A9 cores. I augmented this description with the ADN identifiers
of the memory nodes and devices the kernel needs. The kernel page table generator
then queries the ADN to find the physical addresses of main memory and the devices
as seen by the bootstrap core.

Also in Prolog, I implemented a generator for the C data structures that represent the
page tables. From the information extracted from the ADN it generates a C file that
contains these data structures.

To initialise cores on ARMv7, Barrelfish runs a small binary prior to the CPU driver. By
linking the generated C file to this binary, it can use the data structures to configure the

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 47

MMU.

6.3 Device Management

In the previous section I demonstrated, that ADNs can be used to statically generate
platform dependent code. In this section I show that they can be applied to hardware
configuration at runtime. I do so by using them for device management.

As explained in Section 6.1.4, the drivers to start on the PandaboardES are currently
hardcoded in Kaluga. The same is true for the physical addresses of the device registers
they need access to. To work towards unification of device management, I took the
process of how PCI devices are managed by Kaluga as a reference. This led to the
following requirements for the implementation:

• Device discovery should be event based. Discovered devices should be published
as Octopus records, which are then consumed by Kaluga.

• Driver information should be stored in the SKB. When a device is discovered,
Kaluga should query the driver database to find an appropriate driver.

• Addresses of device registers should not be hardcoded. They should be derived
from knowledge about the platform.

The implementation presented here uses knowledge from ADNs to meet all of these
requirements.

6.3.1 Implementation

To meet the first requirement, I implemented two predicates in the SKB that add Octo-
pus records based on the information in the ADN. The first one adds device discovery
records for all nodes with type device. The second one does the same for cores. Kaluga
invokes these predicates in its initialisation phase.

For the second requirement, Kaluga needs to be able to find suitable device drivers
with the information contained in the Octopus record. PCI uses vendor and device IDs
to identify devices. The records added by the PCI driver include these IDs. The PCI
device driver descriptions in the SKB include a list of supported vendor and device ID
combinations. A suitable driver is found by matching the IDs in the record with the

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 48

entries in this list. For this process to work with devices discovered in the ADN, we
need to be able to identify devices. A natural choice for doing so, is the identifier of the
node that represents the device in the ADN. The record added by the device discovery
predicate includes this identifier. To find the right driver, the identifier is then matched
with the supported identifiers in the ADN device driver descriptions.

The last requirement matches the core use case for ADNs: Getting information about
address spaces. As demonstrated in Chapter 5 we can find the physical addresses of the
required device registers with resolution queries. For PCI the capabilities are managed
by the PCI driver. As we have no such root driver on platforms without PCI, this task
is simply handled by Kaluga itself.

Device drivers are started directly by Kaluga. CPU drivers require an intermediate
step: the coreboot driver. When a core discovery record is added to Octopus, Kaluga
starts the coreboot driver for the type of core that was discovered. This was already
implemented and I did not change this process. The coreboot driver first finds the
correct CPU driver in the driver database. Among other tasks it then sets up the page
tables that will be used by the new kernel. Up until now, it just reused the ones from
the bootstrap kernel. This works for the OMAP as both A9 cores have a very similar
view on the system. However, on more heterogeneous systems this would fail.

As mentioned in Section 6.2, the record for the CPU driver used on the PandaboardES
was augmented: Information about the CPU drivers page table requirements were
added. I extended the coreboot driver to use this information to set up the page ta-
bles. The implementation reuses the queries used for static generation. Instead of being
passed to the code generator, the retrieved information is used by mechanism code in
the coreboot driver to populate the page tables.

6.4 Evaluation

In this section I evaluate the presented implementation by first looking at query exe-
cution times. As the focus in this thesis was not on performance, it is not surprising
that the measured execution times were acceptable but query performance needs to be
improved. Rather, the big achievement of this thesis is the step towards unification
of device management across different platforms. ADNs allow to push address space
knowledge implicitly contained in mechanism code to hardware specifications. This is

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 49

Query Time [ms]

Find device address (SCU) 8
Find device address (UART3) 302
Kernel page table 1307
Discover devices 3
Discover cores 3158

Table 6.1: ADN query execution times

visible in the code complexity of C an CLP code in the parts of the system affected by
the implementation.

6.4.1 Performance

For the use of ADNs for hardware configuration to be practical, the queries need to
execute fast enough to not have a large impact on system performance. However, they
are never executed on the fast path. Therefore, the tolerance is higher. I measured the
execution times of the queries used in the implementations presented in this chapter.
These were

• Find the address of a device

• Find all addresses needed for a kernel page table

• Discover all devices

• Discover all cores

The measured times are found in Table 6.1.

At a first look, the first two rows in the table are surprising: The execution time seems
to depend on the device we want to find the address of. To understand this, we need to
look at how the query traverses the ADN to find the address. Recall from Section 5.2,
that while constraints are used for addresses, translation set entries are traversed us-
ing backtracking. Backtracking results in a depth-first traversal order. The SCU (snoop
control unit) is in the private peripheral region of the Cortex-A9 cores at 0x48240000.
The UART3 (one of the serial ports on the OMAP) is seen at 0x48020000. The cur-
rent implementation of the Sockeye compiler does not necessarily sort the translation
set entries by their source addresses. In our case, the entry leading to the SCU comes

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 50

before the one for the UART3. With a depth-first traversal order, this means, that, to
find the UART3, a much larger portion of the ADN has to be traversed, than is the case
for the SCU. However, the query to find device addresses is only run once for each
device Kaluga starts a driver for. Currently, these are less than 10 devices on the Pand-
aboardES and we can tolerate the query taking longer for some of them. Additionally,
the same query is used repeatedly to get the information necessary to construct kernel
page tables. On the PandaboardES this query runs only once when starting the sec-
ond A9 core and the approximately 1.3s in execution time is not an issue. Even less
so, when generating the page tables for the bootstrap core at compile time. The prob-
lem would be a lot worse, if backtracking was also used for addresses. However, to
use ADNs more broadly, query performance needs to be improved. A possible opti-
misation would be, to store a flattened version of the ADN as described in the original
work: Flattening a node means contracting intermediate decoding steps between the
node and reachable accepting nodes. This reduces the depth of the graph that has to be
traversed drastically (i.e. to one level) and therefore would be faster. A flattened rep-
resentation of a node can be obtained with the query shown in Listing 6.1 and Prolog’s
built-in predicate findall/3.

resolve(

region{

name:’CORTEXA9_1’,

base:SrcBase,

size:SrcSize,

},

region{

nodeId:DestId,

base:DestBase

}

).

Listing 6.1: ADN query to obtain a flattened version of a node

The flattened representation could be produced at compile time. Alternatively, by using
memoisation, the flattened representation could be produced by the first query needing
it and then get cached. The second approach would allow the use of the optimisation
also in a more dynamic setting where the ADN could change at runtime.

An even higher discrepancy between execution times can be observed for the discov-

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 51

ery queries. Recall from Chapter 4 that the Sockeye specifications for the OMAP use
a module for the A9 cores. The nodes representing the two cores originate from the
same node declaration, just from different module instantiations. This means that they
are in different namespaces but have the same name. In Section 4.3.1 I described how
input port mappings create a proxy node outside the namespace they map into. These
proxy nodes are used to attach a more meaningful name in the context of the OMAP
to the cores. The reason why this leads to an expensive core discovery, has to do with
how meta-data can be attached to nodes in Sockeye. Currently attaching meta-data to
nodes is only possible when declaring nodes. The core node type used for discovery
is therefore attached to the node declared inside the module. For clarity we want to use
the proxy name of the core in the driver database. This means that we need to find the
proxy node that maps to the declared one. This again involves expensive depth-first
traversal of the ADN. Meta-data should be usable to convey platform specific informa-
tion for certain nodes to the OS. It is therefore not always useful to attach it to reusable
modules. In the future, it should be possible to attach meta-data to any node. As all
devices in the current OMAP specification are declared in the top level namespace, dis-
covering them is possible without any address resolution. This makes the query much
faster.

6.4.2 Code Complexity

The goal of using ADNs for hardware configuration was to separate hardware knowl-
edge from low level mechanism code. This has the effect of reducing code complexity
especially of platform dependent code. To quantify this effect, I counted the lines of
code in the system parts I changed1. The lines of code were counted for the imple-
mentation in the current version of Barrelfish and the one for this thesis. The lines in
mechanism code (written in C) were counted separately from the lines in CLP code.
The numbers are shown in Table 6.2.

With only 238 lines of code the ADN query implementation is of very low complexity.
Furthermore, it is shared across all system components that use ADNs. With the ability
to query the SKB at compile time, this code can even be shared with the build system.

The complexity of the mechanism code in the binary that initialises the cores before the
CPU driver starts is reduced by about 13.5%. The cost of having to add 205 lines of CLP

1The lines of code were counted using ’SLOCCount’ by David A. Wheeler.

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 52

C LOC CLP LOC
Component BF T BF T

ADN (Shared) – – – 238
Core init 657 568 – 205
Kaluga 1968 1830 – 86

ARMv7 specific 402 275 – 86
Coreboot 2476 2769 – –

Table 6.2: Lines of code (LOC) comparison between Barrelfish (BF) and the implemen-
tation for this thesis (T)

code is outweighed by the benefit of keeping hardware knowledge out of the C code.
Other parts of address space layout dependent code could also be generated. By doing
so also in the CPU driver itself, adding support for new platforms would become much
easier and cheaper.

In Kaluga the benefits of using ADNs were the most evident: While only 86 lines of
CLP code were necessary for the records in the driver database, the platform specific
code for ARMv7 systems was reduced by over 30%. The rest of this code either deals
with other platforms than the PandaboardES or more complex Pandaboard drivers.
Implementing ADN support for these drivers is conceptually not hard but would have
gone beyond the scope of this thesis. By extending ADN support to these drivers and
the other ARMv7 platforms supported by Barrelfish, the ARMv7 specific code could be
removed entirely. Barrelfish would then have a mostly platform independent device
manager!

The only part of the system where mechanism code complexity went up, is the coreboot
driver. However, this is due to the fact that it did not support generating new kernel
page tables when starting cores. Starting a secondary core with a different view on
the system was therefore not possible. With the added ADN support, this should now
work (at least if the core is of the same type as the bootstrap core). However, due to
the lack of such a core with Barrelfish support on the PandaboardES this could not be
tested.

CHAPTER 6. HARDWARE CONFIGURATION IN BARRELFISH 53

6.5 Summary

I have implemented two hardware configuration tasks in Barrelfish using ADNs. One
of them was generating page tables both statically and at runtime. Statically construc-
tion kernel page tables for the bootstrap core reduced the mechanism code complexity
of the core initialisation binary by about 13.5%. Generating more address space knowl-
edge dependent code would reduce this complexity further, also in the CPU driver
itself. The second task was device management: Discovering devices and cores, start-
ing drivers for them and providing the drivers with the required resources. By adding
ADN support to Barrelfish’s device manager, the platform dependent code for ARMv7
based systems could be reduced by over 30%. There is even the potential to remove it
entirely. While query performance is acceptable for the use cases in this thesis, it needs
to be improved. However, the provided query implementation is not optimised for
performance and there are ways to improve it.

Chapter 7

Conclusion & Future Work

The goal of this thesis was to demonstrate that ADNs can be used to configure hard-
ware. I did so by applying them to hardware configuration tasks in Barrelfish both
statically and at runtime.

In Chapter 4 I presented the design of Sockeye, a DSL that can be used to describe
hardware using ADNs. It extends the syntax originally proposed for ADNs with code
reusability features to improve the efficiency when writing hardware specifications.
Sockeye was subsequently used to describe the Texas Instruments OMAP4460 SoC used
in the PandaboardES. The Pandaboard is the platform the hardware configuration tasks
were implemented on.

Barrelfish features a system service called the SKB that allows it to run declarative al-
gorithms to make policy decisions. In Chapter 5 I described how I extended the SKB
with address space knowledge in the form of ADNs. I designed an SKB schema rep-
resenting ADNs and implemented Prolog predicates to query them. The implemented
predicates allow to write expressive queries in a readable manner. To obtain acceptable
performance for this thesis, constraint solving techniques are used to resolve addresses.

Finally, in Chapter 6 I use the ADN knowledge in the SKB to implement two hardware
configuration tasks. The first one is generating kernel page tables both statically and
at runtime. By running a minimal version of the SKB at build time, the CLP code
to query ADNs can be shared between the two implementations. Constructing the
kernel page tables for the bootstrap core statically reduces the code complexity for the
binary initialising a core before the CPU driver starts. This shows, that generating code
that depends on address space knowledge from ADNs is a viable approach to improve

54

CHAPTER 7. CONCLUSION & FUTURE WORK 55

maintainability.

The second hardware configuration task is device management. Using ADNs, the de-
vice manager can discover devices and cores and allocate the required resources to
drivers. For the drivers that are started using the ADN no platform dependent code is
required. This shows that the approach has potential to unify device management in
Barrelfish across platforms and even architectures.

The work presented in this thesis demonstrates the feasability and merits of using
ADNs to configure hardware. However, there are more potential use cases for ADNs
in an OS. In the following I present a few ideas for future work.

7.1 Improvements

To enable further use cases for ADNs in Barrelfish, some improvements on the work
presented are necessary. Wider application of ADNs will increase the number of queries
executed. Hence, slow queries will have a bigger impact on system performance. As
already mentioned in Section 6.4, the performance could be improved by executing
them on a flattened representation of the ADN. Some use cases will also be likely to
need more meta-data attached to nodes. Adding a feature to Sockeye that would allow
to attach arbitrary meta-data as key-value pairs to nodes would be useful. Meta-data
should also be attachable to arbitrary nodes, not just to explicitly declared ones (cf.
Section 4.2). This would allow to augment nodes declared in library modules with
platform specific information. Another useful feature would be support for arithemic
on module parameters.

7.2 Hardware Verification Using Sockeye

As mentioned in Section 4.4, the Sockeye compiler is designed such that adding ad-
ditional backends is easily possible. A backend that produces code for an automatic
theorem prover would allow to use Sockeye specifications to formally prove proper-
ties of the described hardware. One such property is for example well-formedness: An
ADN is said to be well formed, if the decode relation is acyclic. In well-formed ADNs
address resolution is guaranteed to terminate.

CHAPTER 7. CONCLUSION & FUTURE WORK 56

7.3 Static Code Generation

For this thesis I generated kernel page tables with the use of ADNs. However, there is a
lot more code in Barrelfish’s CPU driver that uses address space knowledge. One such
example is a function that translates physical memory addresses to kernel virtual ad-
dresses. Another example are device maps that list the physical addresses of hardware
registers. Both of them are currently hardcoded in Barrelfish and the correct version
has to be selected during compilation depending on the platform and core the kernel is
compiled for. Generating such code would reduce the effort needed to support further
platforms.

7.4 Unifying Hardware Knowledge

The address space knowledge in Barrelfish’s SKB comes from various sources. Some
of it is static, some of it is discovered using mechanisms like ACPI and PCI. The rep-
resentation of the knowledge differs from source to source. A common representation
in the form of an ADN would enable further unification of configuration tasks across
platforms and architectures.

One approach would be to do so via Prolog inference rules: The ADN representation
could be inferred from the facts provided by the various sources. How exactly these
inference rules would look and how the dynamic appearance and disappearance of
devices and especially cores would be handled is an open question. One might try to
infer individual nodes. However, the discovery of a e.g. a co-processor does not just
add some nodes to the ADN, but might introduce a set of new address spaces and
views on the system.

A more involved approach would be to lift Sockeye modules from a purely syntacti-
cal construct to a dynamic concept: To e.g. add a core to the system, the corresponding
module template would be instantiated dynamically. The template arguments and port
mappings would have to be inferred from the discovered information. However, the
current implementation of the compiler cannot check the correctness of module tem-
plates (cf. Section 4.4). Only when the template is instantiated with concrete parameter
values the uniqueness check for node identifiers is performed. Modular checking for
Sockeye could for example be attempted with static code analysis, that e.g. checks for

CHAPTER 7. CONCLUSION & FUTURE WORK 57

potential aliasing between identifier templates. Alternatively the checks could be de-
ferred to runtime, with the disadvantage that bugs in module specifications could not
be detected at compile time. Solving these problems could potentially bring hardware
configuration in Barrelfish to a new level of platform independence.

Appendix A

Lexical Conventions in Sockeye

The Sockeye parser follows similar conventions as used in C. The following conven-
tions are used:

Encoding: The file should be encoded using plain text.

Whitespace: As in C, Sockeye considers sequences of space, newline, tab, and carriage
return characters to be whitespace. Whitespace is generally not significant.

Comments: Sockeye supports C-style comments. Single line comments start with //

and continue until the end of the line. Multiline comments are enclosed between
/* and */; anything in between is ignored and treated as white space. Nested
comments are not supported.

Identifiers: Valid Sockeye identifiers are sequences of numbers (0-9), letters (a-z, A-Z),
the underscore character “_” and the dash character “–”. They must start with a
letter.

identifier → letter(letter | digit | _ | –)*

letter → (A . . . Z | a . . . z)

digit→ (0 . . . 9)

Case sensitivity: Sockeye is case sensitive, hence identifiers UART3 and uart3 are not
the same.

Integer Literals: A Sockeye integer literal is a sequence of digits, optionally preceded
by a radix specifier. As in C, decimal (base 10) literals have no specifier and hex-
adecimal literals start with 0x.

58

APPENDIX A. LEXICAL CONVENTIONS IN SOCKEYE 59

decimal→ (0 . . . 9)1

hexadecimal→ (0x)(0 . . . 9 | A . . . F | a . . . f)1

Reserved words: The following are reserved words in Sockeye:

accept, are, as, at, import, in, input, is, map,

module, output, over, reserved, to, with

Appendix B

Sockeye Syntax

The following listing shows the complete syntax for Sockeye in EBNF. Terminals are
bold while non-terminals are italic. The non-terminals identifier, letter, decimal and hex-
adecimal correspoind to the ones defined in Appendix A.

sockeye=
{

import
} {

mod_decl
} {

node_decl | mod_inst
}

import= import
{

letter | /
}

mod_decl=module identifier
[
param_list

]
{
{

input_port | output_port
}

body }

param_list= (
[

parameter
{

, parameter
}]

)

parameter= param_type identifier

param_type= addr | nat

input_port= input identifier/decimal
{

, identifier/decimal
}

output_port=output identifier/decimal
{

, identifier/decimal
}

body=
{

node_decl | mod_inst
}

mod_inst= identifier
[
arg_list

]
as identifier

[
with

{
input_map | output_map

}]
argument= decimal | hexadecimal | identifier

arg_list= (
[

argument
{

, argument
}]

)

60

APPENDIX B. SOCKEYE SYNTAX 61

input_map= identifier > identifier

output_map= identifier < identifier

interval_templ= identifier{
[
var in

]
interval}

[
interval_templ | simple_templ | identifier

]
simple_templ= identifier{var}

[
simple_templ | identifier

]
var= identifier

limit= decimal | identifier

interval= [limit..limit]

node_decl=
{

identifier is node_spec
∣∣∣ identifier

{
, identifier

}
are node_spec

}

node_spec=
[

type
] [

accept
] [

map
] [

reserved
] [

overlay
]

type= core | device |memory

accept= accept [
{

block_spec
}

]

map=map [
{

map_spec
}

]

reserved= reserved [
{

block_spec
}

]

overlay=over identifier/decimal

block_spec= hexadecimal
[
– hexadecimal

∣∣∣ /decimal
]

map_spec= block_spec to identifier
[
at hexadecimal

] {
, identifier

[
at hexadecimal

]}

Appendix C

Sockeye Checks

The following is a list of all checks the Sockeye compiler performs, grouped by the
transformation stages they are performed in.

C.1 Type Checks

Duplicate Modules This check makes sure that all module names in any of the im-
ported files are unique.

Duplicate Parameters This check makes sure that no module has two parameters with
the same name.

Duplicate Index Variables This check makes sure that no two index variables in the
same scope have the same name.

Undefined Modules This check makes sure that all modules being instantiated actu-
ally exist.

Undefined Parameters This check makes sure that all referenced parameters are in
scope.

Undefined Index Variables This check makes sure that all index variables referenced
in templated identifiers are in scope.

Parameter Type Mismatch This check makes sure that parameters are used in a type
safe way.

62

APPENDIX C. SOCKEYE CHECKS 63

Argument Count Mismatch This check makes sure that module instantiations give the
correct number of arguments to the module template being instantiated.

Argument Type Mismatch This check makes sure that the arguments passed to mod-
ule templates have the correct type.

C.2 Checks during Module Template Instantiation

Module Instantiation Loops This check makes sure that there are no loops in module
instantiations which would result in an infinite nesting of decoding subnets.

Duplicate Namespaces This check makes sure that all module instantiations in a mod-
ule have a unique namespace.

Duplicate Identifiers This check makes sure that all node identifiers are unique. This
includes output ports, declared nodes and nodes mapped to input ports of instan-
tiated modules.

Duplicate Ports This check makes sure, that there are no duplicate input or output
ports. Note that declaring an output port with the same identifier as an input
port is allowed and results in all address resolutions going through the input port
being passed through the module to the output port.

Duplicate Port Mapping This check makes sure that no port is mapped twice in the
same module instantiation.

C.3 Checks during Module Instantiation

Mapping to Undefined Port This check makes sure that there are no port mappings to
ports not declared by the instantiated module.

References to Undefined Nodes This check makes sure that all nodes referenced in
translation sets, overlays and port mappings exist. It also checks that every input
port has a corresponding node declaration.

Bibliography

[1] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe. Formalizing
memory accesses and interrupts. In Proceedings of the 2nd Workshop on Models for
Formal Analysis of Real Systems, MARS 2017, pages 66–116. Open Publishing Asso-
ciation, 2017.

[2] ARM. Cortex-A9 MPCore Technical Reference Manual, Revision r4p1 edi-
tion, 2012. http://infocenter.arm.com/help/topic/com.arm.doc.

100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf.

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: A new os architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 29–44. ACM, 2009.

[4] Cavium. ThunderX CRB 2S Product Brief. Online, 2014. http://www.cavium.
com/pdfFiles/ThunderX_CRB_2S_Rev1.pdf?x=2.

[5] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An
empirical study of operating systems errors. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, pages 73–88, New York, NY,
USA, 2001. ACM.

[6] Cisco. ECLiPSe - A Tutorial Introduction, February 2017. http://eclipseclp.

org/doc/tutorial.pdf.

[7] Cisco. ECLiPSe User Manual, Release 6.1 edition, February 2017. http://

eclipseclp.org/doc/userman.pdf.

[8] Jonathan Corbet. Kernel Development. Online, July 2001. Accessed 2017-10-06.
https://lwn.net/2001/0704/kernel.php3.

64

http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf
http://www.cavium.com/pdfFiles/ThunderX_CRB_2S_Rev1.pdf?x=2
http://www.cavium.com/pdfFiles/ThunderX_CRB_2S_Rev1.pdf?x=2
http://eclipseclp.org/doc/tutorial.pdf
http://eclipseclp.org/doc/tutorial.pdf
http://eclipseclp.org/doc/userman.pdf
http://eclipseclp.org/doc/userman.pdf
https://lwn.net/2001/0704/kernel.php3

BIBLIOGRAPHY 65

[9] devicetree.org. Devicetree Specification, Release 0.1 edition, May 2016. https:

//www.devicetree.org/downloads/devicetree-specification-v0.

1-20160524.pdf.

[10] dragongold. Online, 2015. https://gist.github.com/dragondgold/

1aaabf93279006b703f3.

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of
the 38th Annual International Symposium on Computer Architecture, ISCA ’11, pages
365–376. ACM, 2011.

[12] Unified Extensible Firmware Interface Forum. Advanced Configuration and Power
Interface Specification, Version 6.2 edition, May 2017. http://www.uefi.org/

sites/default/files/resources/ACPI_6_2.pdf.

[13] PCI Special Interest Group. PCI Local Bus Specification, Revision 3.0 edition, Febru-
ary 2004.

[14] Lukas Humbel, Reto Achermann, David Cock, and Timothy Roscoe. Towards
correct-by-construction interrupt routing on real hardware. In Proceedings of the
9th Workshop on Programming Languages and Operating Systems, PLOS ’17. ACM,
2017.

[15] Barrelfish Project. Device drivers in Barrelfish. Barrelfish Technical Note 019, Sys-
tems Group, ETH Zurich, December 2013.

[16] Barrelfish Project. Sockeye in Barrelfish. Barrelfish Technical Note 025, Systems
Group, ETH Zurich, August 2017.

[17] Mark Rutland. Device Tree - The Disaster So Far. Online, 2013. ECL Europe
http://elinux.org/images/8/8e/Rutland-presentation_3.pdf.

[18] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon Peter. A
declarative language approach to device configuration. In Proceedings of the Six-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 119–132. ACM, 2011.

[19] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul
Barham, Tim Harris, and Rebecca Isaacs. Embracing diversity in the barrelfish
manycore operating system. In In Proceedings of the Workshop on Managed Many-
Core Systems, 2008.

https://www.devicetree.org/downloads/devicetree-specification-v0.1-20160524.pdf
https://www.devicetree.org/downloads/devicetree-specification-v0.1-20160524.pdf
https://www.devicetree.org/downloads/devicetree-specification-v0.1-20160524.pdf
https://gist.github.com/dragondgold/1aaabf93279006b703f3
https://gist.github.com/dragondgold/1aaabf93279006b703f3
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
http://elinux.org/images/8/8e/Rutland-presentation_3.pdf

BIBLIOGRAPHY 66

[20] Mark Shuttleworth. ACPI, firmware and your security. Online, March 2014. Ac-
cessed 2017-10-06. http://www.markshuttleworth.com/archives/1332.

[21] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability
of commodity operating systems. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, pages 207–222, New York, NY, USA,
2003. ACM.

[22] Texas Instruments. OMAP44xx Multimedia Device Technical Reference Manual, Ver-
sion AB edition, April 2014. www.ti.com/lit/ug/swpu235ab/swpu235ab.

pdf.

[23] Gerd Zellweger, Adrian Schüpbach, and Timothy Roscoe. Unifying synchroniza-
tion and events in a multicore os. In Proceedings of the Asia-Pacific Workshop on
Systems, APSYS ’12, pages 16:1–16:6. ACM, 2012.

http://www.markshuttleworth.com/archives/1332
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

'HFODUDWLRQ�RI�RULJLQDOLW\

7KH�VLJQHG�GHFODUDWLRQ�RI�RULJLQDOLW\�LV�D�FRPSRQHQW�RI�HYHU\�VHPHVWHU�SDSHU��%DFKHORU¶V�WKHVLV��
0DVWHU¶V�WKHVLV�DQG�DQ\�RWKHU�GHJUHH�SDSHU�XQGHUWDNHQ�GXULQJ�WKH�FRXUVH�RI�VWXGLHV��LQFOXGLQJ�WKH�
UHVSHFWLYH�HOHFWURQLF�YHUVLRQV�

/HFWXUHUV�PD\�DOVR�UHTXLUH�D�GHFODUDWLRQ�RI�RULJLQDOLW\�IRU�RWKHU�ZULWWHQ�SDSHUV�FRPSLOHG�IRU�WKHLU�
FRXUVHV�
BB

, KHUHE\�FRQILUP�WKDW�,�DP�WKH�VROH�DXWKRU�RI�WKH�ZULWWHQ�ZRUN�KHUH�HQFORVHG�DQG�WKDW�,�KDYH�FRPSLOHG�LW�
LQ�P\�RZQ�ZRUGV��3DUWV�H[FHSWHG�DUH�FRUUHFWLRQV�RI�IRUP�DQG�FRQWHQW�E\�WKH�VXSHUYLVRU�

7LWOH�RI�ZRUN �LQ�EORFN�OHWWHUV��

$XWKRUHG�E\ �LQ�EORFN�OHWWHUV��
)RU�SDSHUV�ZULWWHQ�E\�JURXSV�WKH�QDPHV�RI�DOO�DXWKRUV DUH�UHTXLUHG�

1DPH�V��)LUVW�QDPH�V��

:LWK�P\�VLJQDWXUH�,�FRQILUP�WKDW
í , KDYH�FRPPLWWHG�QRQH�RI�WKH�IRUPV�RI�SODJLDULVP�GHVFULEHG�LQ�WKH�µ&LWDWLRQ�HWLTXHWWH¶�LQIRUPDWLRQ�

VKHHW�
í , KDYH�GRFXPHQWHG�DOO�PHWKRGV��GDWD�DQG�SURFHVVHV WUXWKIXOO\�
í , KDYH�QRW�PDQLSXODWHG�DQ\�GDWD�
í , KDYH�PHQWLRQHG�DOO�SHUVRQV�ZKR�ZHUH�VLJQLILFDQW�IDFLOLWDWRUV�RI�WKH�ZRUN�

, DP�DZDUH�WKDW�WKH�ZRUN�PD\�EH�VFUHHQHG�HOHFWURQLFDOO\�IRU�SODJLDULVP�

3ODFH��GDWH 6LJQDWXUH�V�

)RU�SDSHUV�ZULWWHQ�E\�JURXSV�WKH�QDPHV�RI�DOO�DXWKRUV�DUH�
UHTXLUHG��7KHLU�VLJQDWXUHV�FROOHFWLYHO\�JXDUDQWHH�WKH�HQWLUH�
FRQWHQW�RI�WKH�ZULWWHQ�SDSHU�

	Contents
	Lists of Figures
	Lists of Listings
	Lists of Tables
	Introduction
	Related Work
	Background
	Address Decoding Nets
	Barrelfish's System Knowledge Base
	ECLiPSe
	Basics
	Constraints

	Sockeye
	Language Overview
	Basic Syntax
	Node Declarations
	Node Specifications
	Block Specifications
	Map Specifications
	Differences to the Original Syntax

	Advanced Features
	Modules
	Templated Identifiers
	Imports
	Sockeye Files

	Compiler
	Implementation

	Evaluation
	Summary

	SKB Schema
	Representation
	Queries
	Evaluation
	Summary

	Hardware Configuration in Barrelfish
	Preliminaries
	CPU Drivers
	Capabilities
	Octopus
	Kaluga

	Generating Kernel Page Tables
	Implementation

	Device Management
	Implementation

	Evaluation
	Performance
	Code Complexity

	Summary

	Conclusion & Future Work
	Improvements
	Hardware Verification Using Sockeye
	Static Code Generation
	Unifying Hardware Knowledge

	Appendices
	Lexical Conventions in Sockeye
	Sockeye Syntax
	Sockeye Checks
	Type Checks
	Checks during Module Template Instantiation
	Checks during Module Instantiation

	Bibliography

