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Abstract
Modern hardware platforms are increasingly complex and
heterogeneous. System software uses a hodgepodge of differ-
ent mechanisms and representations to express the memory
topology of the target platform. Considerable maintenance
effort is required to keep them in sync while often sharing
is impossible due to hard-coded values. Incorrect platform-
specific values in the hardware initialization sequence can
lead to security critical and hard-to-find bugs because of
misconfigured translation hardware, inaccessible devices, or
the use of bad pointers.

We present a better way for system software to express and
initialize memory hardware. We adopt an existing, powerful
hardware description language, and efficiently compile it to
generate correct initial page tables and memory maps for OS
kernels and firmware from a single system description.
We evaluate our system on multiple architectures and

platforms, and demonstrate that we can use the generated
data structures to successfully initialize translation hardware,
devices, memory maps, and allocators enabling easy support
of new hardware platforms.

1 Introduction
Hardware is becoming both more complex, and simultane-
ously more diverse: Even small SoCs now comprise a dozen
dramatically different processors (application cores, DSPs, ac-
celerators, etc.), bound together with a complex non-uniform
interconnect with each agent having a unique view of sys-
tem addresses. At the same time, the number of different
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platforms to which software must be ported is growing dra-
matically each year, beyond the rate at which high-quality
initialization and management code can be written. One
result is that, despite enormous investment by platform ven-
dors, the state of the art for platform initialization is a hodge-
podge of repurposed mechanisms, none quite fit-for-purpose,
and the widespread reuse of canned initialization snippets,
silently replicating and importing inaccurate assumptions
about hardware.
In this paper, we show by example that there is a better

way. We consider the particular case of page table genera-
tion and allocator initialization, which exposes much of the
complexity of modern hardware (including non-uniform ad-
dressing and heterogeneous processing), while being critical
to the correct and secure operation of the system. We adopt
our existing description language for addressing architec-
tures (Sockeye), which has been shown to be able to express
real, extremely complex modern systems, and which has a
rigorous formal interpretation (decoding nets). Finally, we
formulate the problem of system initialization as one of com-
pilation: can we (efficiently) generate correct initialization
data (here, the initial page tables and allocator state) from a
Sockeye description of the system?
In the remainder of this paper we show that the answer

to the above question is a resounding yes. The decoding net
formalization allows us to frame the problem as determining
whether a page table exists which maps the desired CPU-
visible (“virtual”) address space to the projection of system
resources (RAM, device registers, etc.) onto the CPU’s “phys-
ical” addresses (as computed from the decoding net), within
the constraints of the virtual memory system (e.g. granu-
larity). As we will show, this requires simply the recursive
projection of resources in reverse direction (from enclosed
to enclosing AS) along the decoding net.
Lastly, we show that a straightforward expression of the

decoding net rules in Prolog produces an efficient solution,
which works in practice. We are able to generate correct
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Figure 1. An illustration of the boot process. Individual plat-
form descriptions above, and the proposed solution below.

initial page tables and allocator state for numerous real plat-
forms, and boot and run an actual OS kernel using them.
We further show that the solution is fully general, and not
special-cased to any particular architecture, by generating
both initialization data and configurations for the official
Arm Fast Models simulator for a variety of pathologically-
complex and nonuniform hypothetical platforms, and show-
ing that the generated configuration suffices to boot the OS
in all cases without any user intervention whatsoever.
Our contributions thus are demonstrating that system

initialization data does not have to be hand-crafted but can
be derived efficiently from a formal model and showing
that it can be used to boot an OS even on systems with
esoteric topologies. The standalone toolchain is available
open source [24].

2 Background
Consider the problem of simply booting a modern machine.
A typical boot sequence for an ARMv8 platform is shown in
Figure 1: a chain of different firmware and OS Components
loaded one after the other, each requiring information about
the hardware platform; indeed the OS is the last component
to be loaded and executed.

During boot, all this system software needs to understand
the complex memory topology of the platform and reflect
this in the hardware initialization sequence. A key part of
this challenge, and the one we focus on in this paper, is
the creation of the page tables to configure the processor’s
MMU (and System MMU), constructing the memory map
for populating the memory managers, initializing devices at
the right location and programming them with the correct
memory addresses.

Today, each component in the boot sequence must initial-
ize hardware, or make use of hardware configured in a prior
step. The way this hardware is described today is typically
hardcoded by programmers (even for “discoverable hard-
ware”), and in a variety of ad-hoc and ill-defined formats.
This results in a considerable engineering burden for each
new device (as anyone who has done an OS bringup on a
new piece of modern hardware can attest), and moreover has
the potential to introduce catastrophic and hard-to-debug

A35

MMU MMU MMU MMU

M4

MPU

DRAM LPUART PPB (M4 Private)

CM4 Bridge

System Memory Map M4 Memory Map
0x3722 0000 0x4162 0000

A35 A35 A35

Figure 2. Subset of the NXP i.MX8 memory layout. The
LPUART is accessed using a different addresses from the M4
cores, the >2GiB memory is only accessible from the A35
cores, the PPB is only reachable from the M4 cores.

errors as a result of memory misconfiguration [12, 14, 25],
or wrongly passed tables between components [13, 15, 16].
The memory topology of modern hardware platforms

makes this problem even worse [7]. Memory accesses from
processor cores and devices traverse multiple buses, memory
controllers, and memory translation and protection units be-
fore reaching their destination e.g. memory cell or device
register. For example, Figure 2 shows a typical modern SoC
from NXP, where the meaning of a (physical) address is rel-
ative to the processor core (A35 or M4) or DMA-capable
device (LPUART, PPB) leading to situations where the same
resources appear at different addresses, or different resources
appear at the same address, viewed from different cores.

Current approaches
Today, computers use a mix of different mechanisms and
representations of system state (including memory maps)
at different stages in the boot process: ACPI [17], UEFI [20],
hardcoded values, DeviceTree [10], etc. Linux even builds
initial page tables using hand-written assembly [19]. Arm
Trusted Firmware [18] uses a C data structure to initialize
system page tables [11].
Keeping these representations in sync is purely manual.

Hard-coding various aspects of the platform makes it hard
to share code between platforms and increases the main-
tenance effort needed to support a wide range of systems.
OS developers try to separate initialization code from the
platform-specific values it uses, but quickly run into problems:
in practice, modern hardware cannot be described faithfully
as a set of arguments to a C function, and the ideal of a single
externalized platform description is never achieved.

The most complete description format for platforms today
is DeviceTree [10], used by the Linux kernel to describe non-
discoverable platform information, and also employed (with
different device tree files) by some intermediate bootloaders.
DeviceTree files capture the platform’s application pro-

cessors, memory and caches, devices, interrupt sources, and
clocks in a tree-like data structure with a single root. While
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sufficient for the Linux kernel, it fails to address the gen-
eral problem for several reasons. As its name suggests, a
DeviceTree is a tree. Modern machines are much more gen-
eral (possibly cyclic!) graphs, even in memory addressing [7].
Multiple processors (as in the NXP example above) would
require multiple, overlaid, consistent, trees. Moreover, De-
viceTree files are not well specified: most DeviceTree nodes
have addressing semantics that are defined by the C code of
the corresponding compatible Linux kernel drivers, rather
than a clean formal (or even semi-formal) description.
Consequently, DeviceTree files are of limited use in ini-

tializing a heterogeneous SoC, and cannot serve as basis for
any assurance of correctness for systems relying on them.

Discussion
We argue that, rather initializing and booting a machine rely-
ing on replicated, hand-written, low-level code, interpreting
a semantic-free and inherently incomplete description of the
platform hardware, a better way is needed.

Instead, we start with a formally-specified way to describe
platforms, which can capture the full complexity of modern
systems with different processors and interconnects, and
then use this description to generate low-level system soft-
ware and firmware components that are correct by construc-
tion. This approach is not only motivated by reducing engi-
neering cost, but is also an absolute prerequisite for formally
verifying low-level system software for a given platform.

Our work is thus aligned with other OS synthesis efforts
such as Termite [21] which synthesizes device drivers from
behavioral descriptions of devices and the OS. Hu et al. [8]
identify problems and opportunities in synthesizing an OS
kernel, pointing out that some OS components are inher-
ently hard to synthesize and arguing for a hybrid approach.
This paper is an example: page tables are generated from
descriptions independently of the rest of the OS.

In this paper, we demonstrate that initial page tables can
be constructed generically from formal specifications of the
system at hand. We not only show how this can be done
efficiently, but also demonstrate that it works for heteroge-
neous system with highly esoteric memory addressing. We
start with the formal representation of addressing in modern
SoCs that forms the foundation of our approach.

Decoding nets
We begin with our formally specified model, the decoding
net [2, 3].We have shown it captures thememory topology of
a broad variety of hardware platforms in a rigorous and well-
defined way. Decoding nets express the addressing structure
of a system as a directed graph: nodes represent (virtual or
physical) address spaces or devices (including RAM), and
edges the possible translation between them. The model
distinguishes address-space-local names (address), and global
names (name) that are qualified by their enclosing address
space. Each node may accept a set of (local) addresses (e.g.,

Xeon Phi Core (K1OM_CORE)

Xeon Phi Bus (PHYS)

Xeon Phi SMPTGDDR

IOMMUPCI Bridge WindowRAM

CPU Core

System Address Space

MMIO

LAPIC

BOOT

Figure 3. Example of a decoding net representing an x86
machine with a Xeon Phi accelerator card. Highlighted parts
are described in Figure 4

RAM or device registers), and/or translate them to one or
more global names (e.g., MMU or PCI bridges).

name = Name nodeid address
node = Node accept :: {address}

translate :: address → {𝑛𝑎𝑚𝑒}

Figure 3 shows the simplified decoding net for an x86 ma-
chine with a Xeon Phi [9] accelerator card. The dark nodes
correspond to the accept-only leaf nodes in the graph.

The Sockeye language [23] is a syntax to express the mem-
ory topology of a hardware platform as a decoding net. Sock-
eye bears some superficial similarities to DeviceTrees, but in
contrast has clear semantics that can express decoding nets
formally (and, indeed, generate Isabelle/HOL representations
of such nets). It provides syntactic elements such as regions
and modules that help to express the system in a concise and
understandable way. Figure 4 shows a small excerpt from
the description for the system depicted in Figure 3.
Sockeye is designed around reusable blocks of decoding

net nodes called modules. Each module has a name, pa-
rameters, and a set of input and output nodes to be bound
on instantiation. Figure 4 is an excerpt of a Xeon Phi PCI-
based accelerator module, restricted to the view from its CPU
(K1OM_CORE). This address space in turn has a window
to its local APIC (LAPIC) and maps the rest to the core lo-
cal space (PHYS). This in turn contains memory (GDDR),
an MMIO region for the control registers (MMIO), and an
aperture on the system address space (SMPT_IN).

Sockeye allows tagging of memory regions with predicate
logic terms, e.g., RAM regions are tagged with with mem,
and device registers with devreg. We exploit this information
in correctly mapping devices in our generated page tables.
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1 module XEONPHI {
2 memory (0 bits 40) GDDR
3 GDDR accepts [(0x0 to 0x1ffffffff) (mem)]
4 memory (0 bits 16) MMIO
5 MMIO accepts [(0x0 to 0xfffff) (devreg)]
6 memory (0 bits 40) PHYS
7 PHYS maps [
8 (0 x0000000000 to 0x00fedfffff)
9 to GDDR at (0 x000000000 to 0x0fedfffff);
10 (0 x00fee01000 to 0x01ffffffff)
11 to GDDR at (0 x0fee01000 to 0x1ffffffff);
12 (0 x08007D0000 bits 16)
13 to MMIO at (0 bits 16);
14 (0 x8000000000 to 0xffffffffff)
15 to SMPT_IN at (0x0 to 0x7fffffffff)]
16 // Description of one booting core
17 memory (0 bits 40) LAPIC
18 LAPIC accepts [(0 bits 12) (devreg)]
19 memory (0 bits 40) K1OM_CORE
20 K1OM_CORE maps [
21 (0 x00000000 to 0xfedfffff)
22 to PHYS at (0 x00000000 to 0xfedfffff);
23 (0 xfee00000 bits 12)
24 to LAPIC at (0 bits 12);
25 (0 xfee01000 to 0xffffffffff)
26 to PHYS at (0 xfee01000 to 0xffffffffff)]
27 // Initial pagetable for the boot process
28 BOOT maps [
29 (0x0 to 0xffffffffff)
30 to K1OM_CORE at (0x0 to 0xffffffffff)]}

Figure 4. Simplified Sockeye description of a Xeon Phi co-
processor PCI card. Note the map to SMPT_IN providing a
window to host resources.

3 Implementation
We use generating initial kernel page tables as an example
as it exercises the model (specifically in identifying device
regions), without being dependent on the details of a partic-
ular operating system as all kernels use quite similar layouts
(in contrast to, say, the operation of their memory alloca-
tors). We also use the same techniques described here for
both the static initialization and dynamic runtime state of
the Barrelfish memory allocator and device manager, which
we hope to present in followup work.

The initial structure of a kernel’s virtual address space
is quite simple, and generally consists of a 1–1 mapping of
some portion of the system address space, including enough
RAM for the kernel’s internal needs, plus any devices (such
as interrupt controllers) that the kernel itself relies upon.
Additional device mappings are typically added at runtime,
either within the kernel’s own virtual address space or into
a user process’s space.

The challenge in constructing the initial page table is thus
not in constructing the page table itself. The virtual–physical
map is unconstrained down to the translation granule and

thus can represent any desired mapping. The specific prob-
lem to be solved by querying the decoding net is rather to
identify which regions are accessible to the processor (in
particular the required devices), what their properties are
(e.g., device registers must usually be mapped uncached),
and at what address in the CPU’s ‘physical’ address space
they appear. The page-table generator needs to know, for
example, whether a large mapping must be split to specify
that some sub-range is to be mapped uncached for a device.

Complexity
Recall, the decoding network is a directed acyclic graph, with
accepting regions (here RAM or devices) at the leaves, and
CPU cores (or other bus-mastering agents) at the roots (Fig-
ure 3). It is thus possible in principle to compute the regions
visible at any node iteratively: beginning at the leaves, follow
the edges in reverse to determine where this region appears
in other spaces (noting that it may appear in many, only a
sub-region may appear, it may appear twice, etc.), and re-
peating until all regions have been projected up as far as the
target node of the CPU’s page table mappings.

Acc

Figure 5. Worst-case
region enumeration.

As Figure 5 illustrates, the num-
ber of regions (and hence complex-
ity of any algorithm enumerating
them) is exponential in the diame-
ter of the decoding net. We here see
one accepting region (Acc) mapped
twice into the immediately preced-
ing address space, which in turn is
mapped twice into its predecessor.
In this example we will generate at
least 2𝑛 distinct regions for a root address space at distance
𝑛 from the resource. Note, non-contiguous regions prohibit
merging, thus all 2𝑛 regions might need to be represented.

Solving for a desired configuration will in general involve
a search through this exponentially-large space (runtime al-
gorithms, e.g., allocation have stricter requirements than the
initial page-table generation). We cannot expect an efficient
sub-exponential algorithm to exist for the general case. In
practice, such pathological examples do not occur in actual
hardware, and established heuristic search strategies perform
well. Indeed, we take advantage of the fact that the experi-
mental OS on which we evaluate (Barrelfish) incorporates
the Eclipse/CLP solver for just such system configuration
tasks (the System Knowledge Base [22]), and encode the
problem quite directly as a set of Prolog predicates which (as
Section 4 shows) performs very well in practice. Note, our
encoding only uses the Datalog subset of Prolog.

Prolog Encoding
Figure 6 gives the syntax used to encode a decoding net as
Prolog assertions. The translate and accept facts are gener-
ated by straightforward compilation from a Sockeye descrip-
tion of the system (e.g., Figure 3). For efficient evaluation, we
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1 % Datatypes
2 NodeId :: [String]
3 Block :: block(base :: Int , limit :: Int)
4 Region :: region(id :: NodeId , blocks :: [Block],
5 prop :: BooleanExp)
6 % Predicates
7 translate(in :: Region , out :: Region).
8 accept(r :: Region).

Figure 6. Prolog datatypes and dynamic predicates

do not express individual addresses directly, but rather use
larger blocks that form (not-necessarily-contiguous) regions.

The the predicate below expresses the one-step projection
from destination region 𝐷 up to some source region 𝑆 in
a predecessor address space. It ensures the existence of a
mapping from some region of a source address space 𝑆𝑀
to some region of a destination space 𝐷𝑀 , such that the
intersection of 𝐷𝑀 and 𝐷 is exactly 𝑆𝐼 , or the image of the
source region under the mapping. The remaining conjuncts
establish the position of 𝑆 within the mapping source region
𝑆𝑀 as a function of the position of the image within 𝐷𝑀 .

1 decode_step_rev(D,SI,S) :-
2 translate(SM ,DM),
3 reg_intersection(DM, D, SI),
4 DM = region(_, [block(DMBase , _)],_),
5 SI = region(_, [block(SIBase , SILimit)],_),
6 SM = region(SNode ,[block(SMBase ,_)],_),
7 SBase is SMBase + (SIBase - DMBase),
8 SLimit is SBase + (SILimit - SIBase),
9 S = region(SNode ,[block(SBase ,SLimit)],_).

Finding the location of all regions visible in some top-level
address space 𝐴 requires solving for 𝑆 for every value of
𝐷 for which accept(𝐷) holds in the transitive closure of
decode_step_rev, i.e., where the source region eventually
maps to the accepting region. Adding architecture-specific
constraints on allowable page-table entries (e.g., page align-
ment), and enumerating all solutions for 𝑆 then gives the
values for all page table entries. Properties (e.g., cacheability)
are taken directly from the accepting region.

Output Generation and Integration
The system integration toolchain (Figure 7) uses the results
of the reachable-region query on the decoding net in several
compile time and runtime locations.
Firstly, the returned mapping entries are encoded into

machine-specific page-table descriptors and output as static
initializers for a C array comprising the initial page tables.
As the page table is (on all these architectures) multilevel,
we exploit the linker and loader to correctly finalize the de-
scriptors. While the last-level descriptors directly refer to
known CPU-physical addresses, higher level descriptors re-
fer to lower-level tables, whose location is unknown at com-
pile time. Instead of hard-coding these addresses, we emit

Platform 
description
(Sockeye)

Sockeye
compiler

Memory maps

Prolog
representation

Runtime library

Direct embedding

Page tables

Memory manager

Isabelle/Hol

Prolog

Engine

Arm FastModelsLISA+ Model Platform configuration

Figure 7. Integration of the query engine with the OS. High-
lighted components are part of the boot image.

carefully-generated ELF relocation records ensuring that the
correct addresses will be filled in either by the linker (if build-
ing static, position-dependent code) or the (boot-)loader if
the kernel is dynamically-loaded and position-independent.
Secondly, the query results are used to initialize various

other OS data structures, including the initial state of the
memory allocator (i.e. the location of all RAM regions), and
the device manager (which is told the resources required by a
driver for all statically-discoverable devices). These runtime
structures are thus guaranteed consistent with the kernel’s
internal view of the memory system, and the offline model.

Finally, the decoding net itself (expressed in the syntax of
Figure 6) is (on Barrelfish) seeded into the SKB. This data
is queried dynamically at runtime (and indeed, extended as
the result of online device discovery), and used to initialize
additional devices requiring, for example, IOMMU page table
configuration. This includes, among others, the Xeon Phi
accelerator used as an example here, which incorporates
numerous full CPU cores which run their own instance of the
OS kernel. The onlinemodel is further used (with appropriate
queries) to correctly allocate and map DMA-able memory
accessible to devices with different views of the system from
that of the CPU (again, including the Xeon Phi).

4 Evaluation
We evaluate our approach with two experiments: First, we
show that it is feasible to generate initial kernel page ta-
bles and memory maps for an OS running on various real
platforms. Then, we demonstrate that it even works for con-
structed, intentionally hard to deal with memory topologies.

4.1 Real Platforms
Decoding nets can accurately capture memory topologies of
real hardware [3]. Here we show that our Sockeye-generated
page tables and memory maps suffice to boot an OS kernel
on real hardware.

We use the following existing Sockeye specifications:
• x86_64: Normal x86-64 PC, and QEMU emulator.
• k1om: Intel Xeon Phi co-processor (Knights Landing)
• Armv7: Pandaboard, a TI OMAP44xx based board
• Armv8: Arm Cortex-A57 FVP, a simulated dual core
reference platform, and QEMU emulator.
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Configurable Memory Map

Arm Cortex A57Arm Cortex A57

Configurable Memory Map

DRAM 0 DRAM 1 DRAM 2 DRAM 3

Figure 8. Memory topology of the Swapped + Private simu-
lator platform (DRAM 1/2 shared, DRAM 0/3 private)

We generate page tables and other initialization data for
each platform as described in Section 3, and use them to boot
Barrelfish [6]. The bootdriver uses the generated page tables
to initialize the kernel address space by simply setting the
translation base register to the start of the page table binary.
The bootdriver then loads the kernel, passing the locations of
page tables and device mappings as an argument. The kernel
accesses all memory and device via the generated tables.
In all cases, the kernel boots and configures all devices

correctly using the generated page tables installed.
Despite the simplicity of the Prolog implementation, the

generation process is robust enough to handle a wide vari-
ety of real hardware platforms. While we use Barrelfish for
demonstration, nothing about the generated tables or data
structures is OS specific, and could be used just as well in
other OSes such as Linux or seL4.

4.2 Simulated Platforms
We show that the Sockeye toolchain is also capable of han-
dling platforms with pathologically-hardmemory topologies,
where cores have completely different views on memory.

We specify the memory topology of the platforms using
the Sockeye language. We use another backend to generate
a configuration for the Arm FastModels simulator [4] corre-
sponding to the specified topology. We use this to generate
a range of unusual platforms for evaluation as follows:
We adapt the base topology of the A57 FVP of the pre-

vious experiment to generate three additional topologies
(Figure 8 shows the basic structure). There are four one-GiB
DRAM regions. In addition to its MMU, each core has its own
configurable memory map defining its visibility of DRAM.

In the base case, both cores have the same view: [0,1,2,3]
the first GiB maps to DRAM0, the second to DRAM1, etc.
The remainder are configured as follows:
Swapped: DRAM is split in two and the address ranges where
the cores see the halves are swapped relative to each other.
One sees DRAM as [0,1,2,3] and the other as [2,3,0,1].
Private: DRAM [1,2] are shared, and each core has a private
region of DRAM. The mappings are [1,2,0] and [1,2,3].
Swapped + Private: This combines the others: the shared re-
gions of the previous topology are swapped. The resulting
mappings are [1,2,0] and [2,1,3].

The toolchain generates the simulator configuration, and
the page tables and memory maps from the same Sockeye
description. We boot Barrelfish on the simulated platforms.

Barrelfish boots successfully into userspace on all plat-
forms. The cores use the same code except of the parts gener-
ated from the topology information. Processes on the cores
successfully communicate over shared memory.
The generation approach is robust enough not only for

real hardware, but in adversarial scenarios with exceptionally
peculiar memory topologies. By using a single Sockeye de-
scription, the generated core-specific memory maps ensure a
consistent view of memory and thus enable shared-memory
message channels.

5 Future Work
Generating page tables is a first step towards OS configura-
tion based on the decoding net model. We plan to apply the
approach outlined in the paper to the full boot process. If we
can precisely specify the starting state for each boot stage,
then we can not only eliminate unsafe memory accesses due
to wrongly configured translation tables, but also precisely
specify the contract between two stages.
Similarly, we can use the same approach to express addi-

tional protection mechanisms (e.g., Arm TrustZone [5]) in
Sockeye and generate configurations to divide resources in
secure and non-secure worlds.

Moreover, we plan to use the runtime representation and
algorithms presented in this paper in memory allocators to
find memory regions that can be shared between the driver
software and accelerators/devices, and to guide configuration
using the recently proposed mmapx interface [1].
Finally, our deep embedding of Prolog in Isabelle/HOL

provides a framework to link the algorithms and facts pro-
duced by the Sockeye compiler back to the decoding net
model and enables proofs about its correctness.

6 Conclusion
In this paper, we have presented a system that leverages
the sound foundation provided by the decoding net model,
and the Sockeye language to generate platform-specific data
structures such as page tables and memory maps. We have
outlined the required algorithms, their implementation in
Prolog, and the integration into the build system to obtain a
page table binary image that is then used by the operating
system to configure the translation hardware.
Our evaluation qualitatively shows the application and

integration of the address space model into the OS toolchain
to generate low-level, platform-specific OS code and data
structures. Our approach and implementation thereof is func-
tional even when run on simulated platforms with unusual
address space topologies not supported by other systems.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back and comments. We acknowledge the generous support
of Arm Ltd., VMware and Huawei for this work.



Generating correct initial page tables from formal hardware descriptions PLOS ’21, October 25, 2021, Virtual Event, Germany

References
[1] Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Hum-

bel, Timothy Roscoe, and Daniel Schwyn. 2021. Mmapx: Uniform
Memory Protection in a Heterogeneous World. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan)
(HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 159–166. https://doi.org/10.1145/3458336.3465273

[2] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
2017. Formalizing Memory Accesses and Interrupts. Electronic
Proceedings in Theoretical Computer Science 244 (Mar 2017), 66–116.
https://doi.org/10.4204/eptcs.244.4

[3] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
2018. Physical Addressing on Real Hardware in Isabelle/HOL. In
Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.).
Springer International Publishing, Cham, 1–19. https://doi.org/10.
1007/978-3-319-94821-8_1

[4] ARM Ltd. 2019. Development Tools and Software: Fast Models. https://
www.arm.com/products/development-tools/simulation/fast-models

[5] ARM Ltd. 2021. Arm TrustZone Technology. https://developer.arm.
com/ip-products/security-ip/trustzone.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (Big Sky, Montana, USA)
(SOSP ’09). ACM, New York, NY, USA, 29–44. https://doi.org/10.1145/
1629575.1629579

[7] Simon Gerber, Gerd Zellweger, Reto Achermann, Kornilios Kourtis,
Timothy Roscoe, and Dejan Milojicic. 2015. Not Your Parents’ Physical
Address Space. In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems (Switzerland) (HOTOS’15). USENIX Asso-
ciation, Berkeley, CA, USA, 16–16. http://dl.acm.org/citation.cfm?id=
2831090.2831106

[8] Jingmei Hu, Eric Lu, David A. Holland, Ming Kawaguchi, Stephen
Chong, and Margo I. Seltzer. 2019. Trials and Tribulations in Syn-
thesizing Operating Systems. In Proceedings of the 10th Workshop
on Programming Languages and Operating Systems (PLOS’19). As-
sociation for Computing Machinery, New York, NY, USA, 67–73.
https://doi.org/10.1145/3365137.3365401

[9] Intel Corporation. 2014. Intel Xeon Phi Coprocessor System Software
Developers Guide.

[10] Linux Kernel Documentation. 2019. Device Tree Source Format (version
1). Linux. Retrieved 06 August 2021 from https://git.kernel.org/pub/
scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt

[11] Arm Ltd. 2021. ATF - Translation (XLAT) Tables Library. https:
//trustedfirmware-a.readthedocs.io/en/latest/components/xlat-
tables-lib-v2-design.html

[12] Red Hat Bugzilla 2010. Bug 654665 - EFI/UEFI page table initialization
is incorrect for x86_64 in physical mode. Red Hat Bugzilla. https:
//bugzilla.redhat.com/show_bug.cgi?id=654665

[13] sunxi 2012. Unable to pass memory configuration from u-boot to kernel.
sunxi. https://github.com/linux-sunxi/u-boot-sunxi/issues/11

[14] Kernel.org Bugzilla 2013. Bug 56461 - Memory corruption on PAE x86
systems. Kernel.org Bugzilla . https://bugzilla.kernel.org/show_bug.
cgi?id=56461

[15] Linux Kernel Mailing List 2017. efi/x86: Prune invalid memory map
entries and fix boot regression. Linux Kernel Mailing List. https:
//lore.kernel.org/patchwork/patch/752197/

[16] launchpad 2019. Full RAM on Pi4 isn’t accessible when using u-boot.
launchpad. https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/
1847500

[17] UEFI Forum, Inc. 2021. Advanced Configuration and Power Interface
(ACPI) Specification. UEFI Forum, Inc. https://uefi.org/htmlspecs/
ACPI_Spec_6_4_html/

[18] Arm Ltd. 2021. Arm Trusted Firmware. Arm Ltd. https://github.com/
ARM-software/arm-trusted-firmware

[19] Linux 2021. Linux x86 boot code. Linux. https://github.com/torvalds/
linux/blob/master/arch/x86/boot/compressed/head_64.S

[20] UEFI Forum, Inc. 2021. Unified Extensible Firmware Interface (UEFI)
Specification. UEFI Forum, Inc. https://uefi.org/sites/default/files/
resources/UEFI_Spec_2_9_2021_03_18.pdf

[21] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot
Heiser. 2009. Automatic Device Driver Synthesis with Termite. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles - SOSP ’09. ACM Press, Big Sky, Montana, USA, 73. https:
//doi.org/10.1145/1629575.1629583

[22] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon
Peter. 2011. ADeclarative LanguageApproach to Device Configuration.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). ACM, New York, NY, USA,
119–132. https://doi.org/10.1145/1950365.1950382

[23] Daniel Schwyn. 2017. Hardware Configuration With Dynamically-
Queried Formal Models. Master’s Thesis. Department of Computer
Science, ETH Zurich, Switzerland. https://doi.org/10.3929/ethz-b-
000203075

[24] Sockeye Project. 2021. Sockeye Compiler Code Repository. https:
//github.com/Sockeye-Project/sockeye-compiler

[25] Ulf Frisk. 2018. Total Meltdown? http://blog.frizk.net/2018/03/total-
meltdown.html

https://doi.org/10.1145/3458336.3465273
https://doi.org/10.4204/eptcs.244.4
https://doi.org/10.1007/978-3-319-94821-8_1
https://doi.org/10.1007/978-3-319-94821-8_1
https://www.arm.com/products/development-tools/simulation/fast-models
https://www.arm.com/products/development-tools/simulation/fast-models
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
http://dl.acm.org/citation.cfm?id=2831090.2831106
http://dl.acm.org/citation.cfm?id=2831090.2831106
https://doi.org/10.1145/3365137.3365401
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://bugzilla.redhat.com/show_bug.cgi?id=654665
https://bugzilla.redhat.com/show_bug.cgi?id=654665
https://github.com/linux-sunxi/u-boot-sunxi/issues/11
https://bugzilla.kernel.org/show_bug.cgi?id=56461
https://bugzilla.kernel.org/show_bug.cgi?id=56461
https://lore.kernel.org/patchwork/patch/752197/
https://lore.kernel.org/patchwork/patch/752197/
https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/1847500
https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/1847500
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1950365.1950382
https://doi.org/10.3929/ethz-b-000203075
https://doi.org/10.3929/ethz-b-000203075
https://github.com/Sockeye-Project/sockeye-compiler
https://github.com/Sockeye-Project/sockeye-compiler
http://blog.frizk.net/2018/03/total-meltdown.html
http://blog.frizk.net/2018/03/total-meltdown.html

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	4 Evaluation
	4.1 Real Platforms
	4.2 Simulated Platforms

	5 Future Work
	6 Conclusion
	Acknowledgments
	References

