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Abstract: With the computational systems of even embedded devices becoming ever more powerful,
there is a need for more effective and pro-active methods of dynamic power management. The
work presented in this paper demonstrates the effectiveness of a reinforcement-learning based
dynamic power manager placed in a software framework. This combination of Q-learning for
determining policy and the software abstractions provide many of the benefits of co-design, namely,
good performance, responsiveness and application guidance, with the flexibility of easily changing
policies or platforms. The Q-learning based Quality of Service Manager (2QoSM) is implemented on
an autonomous robot built on a complex, powerful embedded single-board computer (SBC) and a
high-resolution path-planning algorithm. We find that the 2QoSM reduces power consumption up to
42% compared to the Linux on-demand governor and 10.2% over a state-of-the-art situation aware
governor. Moreover, the performance as measured by path error is improved by up to 6.1%, all while
saving power.

Keywords: middleware; power management; dynamic power management; reinforcement learning;
dvfs; voltage scaling; machine learning

1. Introduction

From Internet-of-Things devices to data centers, computing systems remain power
constrained. These constraints are found in thermal limits, battery capacity, economic cost
or the physical delivery of power. Power management means different things depending
on the context, but fundamentally, computers control power consumption by reducing the
performance of system devices. Effective power management lies in finding which devices
and power settings reduce power without significantly degrading performance.

In CPUs, dynamic power management is centered around dynamic voltage and fre-
quency scaling (DVFS) [1] and power gating [2,3]; DRAM may reduce refresh rates [4,5]
and hard drives may power off [6]. The use of these techniques often reduce performance,
but if a device is underutilized or idle, this trade-off is worth making. This situation
becomes significantly more complex when we look at modern systems. The real-time re-
quirements, low-latency interactivity, or mixed or changing boundedness can make simple
power management policies less effective or tenable. The emergence of heterogeneous
computational units (e.g., big.LITTLE) and memory (DRAM + NVM) as well as periph-
erals with large power budgets (e.g., accelerators) only increase the complexity of power
management optimizations.

The solution presented in this paper aims to confront this complexity through greater
cooperation between the software and hardware. Avoiding the difficulty of hardware–
software co-design by using a software framework allows us to use application guidance
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and performance data and hardware state information to make effective proactive power-
management decisions. These policies are undertaken by a Q-learning-based quality-of-
service manager (2QoSM).

Section 2 places this work into the state of the art, identifying improvements over
existing systems as well as work that is complementary. Section 3 expands on the motiva-
tions for this system. Section 4 details the software architecture including an overview of
Q-Learning and the implementation of the Q-Learner Quality of Service Manager (2QoSM).
Section 5 demonstrates the effectiveness of 2QoSM on an autonomous robot. Section 6
discusses the lessons learned from this research and the future directions of our work.

2. Related Work

Power consumed by a computing system can be described by the equation

Psys = PCPU + Pmem + Pdisk + Pnet + Pper (1)

where the system power Psys consists of the sum of the power consumed by the CPU
(including co-processors) PCPU , memory system Pmem, storage Pdisk, networking Pnet and
other peripherals Pper. The contribution of components in Equation (1) vary significantly
between computing systems. Early PC requirements looked much different from what we
see today. A standard computer in the mid-1990s could have the monitor consuming well
over half of its total power budget, 20% from the large, spinning hard disk, and less than
a watt used by both CPU and memory together [6]. By comparison, modern CPUs can
consume significantly more power, anywhere from less than 5 W for a notebook processor
to 400 W for a large server processor (5-800x) [7]. Enterprise and HPC systems can spend
up 40% of total power budget on DRAM alone [8] In mobile devices, the OLED/LCD
display may consume 25% [9], 50% [10] or more [11] of the energy budget. While a phone’s
radios may consume power equal to the display, in embedded IoT devices this makes up
the majority [12]. It is clear that the power consumed by various subsystems in different
systems varies dramatically and requires complex power management schemes.

The first techniques of power management involved simply turning off the system
during idle periods, initially manually. Early automated power management determined
when a system was idle and powered down components using a standard interface such
as Advanced Power Managment (APM) [13] and Advanced Configuration and Power
Interface (ACPI) [14].

2.1. Dynamic Voltage and Frequency Scaling

Arguably the most important technological advance in computer power management
was dynamic voltage and frequency scaling (DVFS). Its effectiveness is clear when we
examine the power consumed by a CPU, expressed [15] by the equation

PCPU = pt(CL ∗V ∗Vdd ∗ fclk) + Isc ∗Vdd + Ileak ∗Vdd (2)

where pt is the probability of transition (activity), CL is capacitive loading, V is logic voltage,
Vdd is supply voltage, fclk is clock frequency, and Isc and Ileak are short-circuit and leakage
currents, respectively. The capacitive loading of the circuit CL [16] and leakage current
Ileak [17] are a fact of the underlying digital design. The use of power gating [2,3] can reduce
the leakage current; however, this requires hardware enabling and, when available, can
be controlled by the same types of mechanisms as DVFS. The short-circuit current Isc is
caused by transitions and thus directly related to clock frequency, but because it is based
upon transistor design it can be treated as a constant consumption [18]. Activity pt as a
power-management technique is improved through software efficiency, but fundamentally
the instructions executed are represented by transitions and thus cannot be dynamically
controlled without changing the underlying software.
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This leaves voltage and frequency as the primary control variables of dynamic power
management allowing Equation (2) to be simplified [1] as:

PCPU ∝ V2 · f (3)

where the CPU power consumption PCPU is directly proportional to the voltage V squared
times the clock frequency f .

For a power manager to operate, there are two fundamental requirements: (1) knowl-
edge of the computing system’s state and (2) the ability to change the power state of a
device. In the simple case of software running on a CPU, power management was relatively
simple: adjust the DVFS states (known in ACPI as P-States) to reduce the processor idle
time. The situation becomes more complex when there are heterogeneous processing units
and power consumption is dependent on which cores are executing the process. When
we expand our management from CPUs and other heterogeneous computational units to
memory, networking, and peripherals, normal optimizations become infeasible because
changes in any given subsystem may have dependencies to other systems. For example,
slowing memory devices may increase latency and thus stalls in the CPU pipeline, reducing
the efficiency of the CPU power management. Similarly, spinning down a disk prematurely
and forcing it to power up before accessing data can cause significant wasted power by the
CPU while waiting.

The most common and straightforward method of using DVFS is to target a desired
system load (say, 65%) and step up or down the P-states to reach it. This is the policy
used by the default Linux on-demand governor: it measures the idle time of the CPU and
increases or decreases the CPU P-State in order to reach its target [19,20]. There are more
sophisticated strategies for controlling DVFS including periodic workload scheduling [21],
integrated run-time systems such as CPU MISER [22], CoScale [23], or energy quota-based
systems like Intel’s RAPL [24].

An alternative paradigm of power-management is known as race-to-idle [25,26] or
race-to-halt [27]. This is possible because modern processors are able to quickly power
down regions of the CPU (power-gating). Instead of trying to optimize the voltage states,
we use the highest possible performance state to complete the work and immediately
attempt to power down. Using DVFS states, especially when attempting race-to-halt,
relies on the assumption that the task is compute bound as opposed to memory bound. A
computationally bound process is only limited by the speed of instructions retired by the
CPU and will directly benefit from increasing a processor’s frequency (and thus retirement
rate). However, if the process is memory bound, increasing the CPU performance will not
significantly speed up execution [28] while still using more power. Thus, other techniques
must be used such as memory frequency scaling [29], offlining memory pages [30], reducing
refresh rates [31], and the use of heterogeneous memory [32,33]. Mixed workloads are
more of a challenge because they may benefit from DVFS periodically as the program
changes execution regions. Li et al.’s work on COS shows how one could model the
expected performance from different power states using a combination of offline and online
profiling in scientific applications described as mixed workloads [34]. An advantage to
using a machine-learning informed policy is that if race-to-halt turns out to be the best
policy for a given combination of workload ans system, the policy will converge to that,
while still being flexible enough for more memory-bound or mixed workloads. This work
also attempts to optimize the power consumption and performance mixed workloads by
modern techniques for power management as described below.

2.2. Modern Power Managers

As computer systems become more powerful both in the sense of computational
performance and literal power consumption, there is a greater opportunity to use extra
CPU cycles for more efficient predictive power management and scheduling. Many of these
systems are described in the literature as “power managers” or “power and performance
managers” but we will refer to them more generally as “quality-of-service managers”
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(QoSM) or QoS management. This more generalized term encompasses the broad spectrum
of hardware and software targets, constraints and goals. The two primary areas that
are related to our work are middleware for quality-of-service management and machine
learning-based power managers.

The use of middleware, a software abstraction layer between application and operat-
ing system, for power and performance management has been examined by researchers
for more than two decades. Li et al. introduced a performance-aware middleware for
distributed video systems in an attempt to balance the objectives of hardware and applica-
tion [35]. Shortly after, Zhang et al. developed ControlWare, a system for QoS management
in distributed real-time systems and propose the idea of convergence guarantees that lie
between hard and probabilistic performance guarantees [36]. This use of feedback-control
theory to manage resources based upon an application’s QoS is closely related to our
system in concept but differs in target application and scope. ControlWare is intended
for distributed systems and makes use of coordination entities that are not useful for a
single-purpose system.

Hoffman et al. demonstrate the danger of trying to optimize for accuracy and power
without coordination and propose CoAdapt, a runtime controller for dynamic coordination
of performance, accuracy and power [37]. We believe the attempt to balance accuracy
(error) and power consumption by adjusting both hardware and application algorithm is
an effective strategy and we make us of this idea in our work. Where the systems diverge
is in target application/hardware (embedded v. enterprise) and choice of QoSM (feedback
control v. machine learning). In the past couple years, systems power management using
control theory have been proposed including those based upon SISO [38] and a supervisory
and control theory (SCT) [39]. We agree that the formalism of control theory has its place in
power management; however, we believe the very stability and rigor that are obtained by
control theory can limit the optimizations available when interactions between systems
become more complex.

Other recent examples of using a software framework, specifically using big.LITTLE-
based platforms, are the work done by Muthukaruppan et al. which use hierarchical con-
trollers [40] and price-theory [41]. Where their framework is evaluated using computationally
intensive benchmarks, our work is focused on complex physical system controllers which we
believe are more challenging to optimize and thus require more complex techniques. Simi-
larly, a software framework for resource management in control systems was developed
on a big.LITTLE platform [42]. This work did not attempt voltage and frequency control,
but did take into account the available resources when starting and stopping controllers.

Imes et al. developed a series of hardware- and software-agnostic frameworks for
power management in real-time systems. POET, a C-based framework, minimizes energy
consumption while still meeting soft real-time constraints of a set benchmarks [43]. They
then expanded upon POET to create Bard which allows for runtime switching between
power and performance constraints [44]. POET/Bard are closely related not only due to
their framework architecture but also their use of the ODROID-XU3 as an experimental
platform. Bard uses a set of frequencies and their associated speedups and power usages
that must be computed offline, whereas our learner simply has knobs to turn and dials to
read. Therefore, 2QoSM provides an advantage for memory-intensive or mixed workloads
when the calculated speedup associated with a specific P-state is an optimistic upper bound
for a compute-bound workload.

The 2QoSM described in this work was designed as a drop-in replacement for a
situation-aware governor [45]. We make use of the framework and experimental platform
to demonstrate both the ease of replacing the power manager, as well as the improvements
of the Q-learner over a simple governor. Additional differentiation between the two
frameworks is described in more detail in Section 4.
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2.3. Machine Learning in Power Management

There have been numerous recent machine learning-based power managers. Of these,
a large number have used reinforcement learning to identify a policy for a given state of a
CPU [46]. We frame dynamic power management as a reinforcement learning problem in
more detail in Section 4.2.

Martinez and Ipek [47] evaluate machine learning as a tool for making low-level power
management decisions such as DRAM scheduling and allocation. In a CPU + FPGA + DSP het-
erogeneous computing system running image processing applications, Yang et al. manage
power consumption using a regression-based learner [48].

A number of researchers have used Q-learning specifically to develop policies for
power management. Ye and Xu attempt to reduce power consumption with a Q-learning
by optimize idle periods [49]. Our 2QoSM in that Ye and Xu attempt to reduce the number
of state transitions, while 2QoSM is only concerned with the measured error and power
consumption. If frequent transitions are increasing power consumption through leakage
current, because we are measuring the real-time current, we believe 2QoSM should identify
this and adjust the policy accordingly. In addition, ref. [49] was done in simulation using
synthetic benchmarks while the experimental platform in this work is an application
running on real hardware.

Shen et al. select DVFS states using a Q-learner by constraining performance and
temperature while attempting to minimize the total energy [50]. The metrics used are CPU
intensiveness (similar to stall–cycle ratio [28]), instructions-per-second and temperature.
Even though they make similar design decisions as those we discuss in this paper, our
work has some notable differences. Most importantly, our reward and state are not based
upon CPU utilization (i.e., IPS) but instead the measured application performance, which in
the case of a physical system is much more representative of total system performance than
CPU load. In addition, because their constraints are given by the user, scenarios can arise
in which the learner cannot find a policy that meets the desired constraints.

Ge et al. also use CPU metrics, user-identified constraints and temperature for de-
termining state and reward [51] Das et al. allocate threads and set DVFS states using a
Q-learner to to obtain a desired performance target [52]. Their work is centered on thermal
limits, especially as they relate to temperature-dependent leakage current and mean-time-
to-failure (MTTF). Time-based deadlines are their performance targets, while because our
application’s execution time is not known a priori, we must use runtime metrics to deter-
mine application performance. Gupta et al. use deep Q-Learning (DQL) using a similar
big.LITTLE SBC to obtain near-optimal performance per watt [53]. We agree with the
authors that DQL is a viable dynamic power management strategy, it does have significant
drawbacks that our work does not. DQL requires the creation of an Oracle, requiring a
significant amount of offline training and benchmarking. For a non-deterministic physical
system, may not only be a significant amount of work but actually impossible.

3. Motivation

As discussed in Section 2, there are many different techniques of software-controlled
power management. In one extreme, you have generic one-size-fits-all techniques in general
purpose operating systems such as Linux’s on-demand governor. These techniques work
across a variety of systems and tend to work well in overall, but due to their generality,
remain greatly suboptimal. At the other extreme, there is strict co-design, wherein policies
and applications are designed for a specific hardware platform and have direct control
over all settings. Careful co-design allows the possibility of strong correctness guarantees
and near-optimal performance/power consumption, but tight coupling requires significant
engineering work and eliminates cross-platform portability. With the huge number of
individual platforms, especially among single-board computers (SBCs) and systems-on-a-
chip (SoCs), this tight coupling is a serious drawback.

An ideal system would have the benefits of co-design, namely, interaction between
application and hardware but without the tight integration that makes portability difficult.
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Our work attempts to create such a system by allowing application state, performance, and
guidance as well as hardware state and control to be abstracted and managed through a
power controller. This controller does not have to understand the specifics of provided state
or available actions, only that its actions result in state changes. From the observed state
changes, it can determine via a reward function, which actions provide the best outcomes
in a given state.

Moreover, by providing a communications channel between application and hardware,
we no longer have to rely on simple computational metrics of performance, but instead
can use both quantitative and qualitative application and whole-system performance. For
example, when running the blacksholes benchmark [54], the result obtained from a given
dataset is the same across all platforms, only the execution time differs. However, in
a phyical system, we are focused not only on the speed of execution but the quality of
execution, because the targeted algorithms are non-deterministic either due to the presence
of a physical plant or because the algorithms themselves have multiple possible outcomes
(e.g., quality settings of video encoding).

4. System Overview

Our system consists of two primary components: the middleware and the power-
manager itself. The motivation and design of the middleware architecture is discussed
in Section 4.1 with a particular emphasis on aspects that differ from previous work. The
power manager itself, the 2QoSM, is discussed in Section 4.2, beginning with its place in
machine learning-based power managers, followed by details of implementation.

4.1. Software Architecture

The primary goals of the underlying software architecture are modularity and reusabil-
ity. One of the reasons why standard power management techniques have been unchanged
for so long (e.g., Linux’s on-demand governor) is because, aside from working well enough,
they do not require tightly coupled integration with the underlying hardware. Specifics
of hardware control are abstracted through drivers and the /sys virtual filesystem. While
this allows for easier programming and some measure of universality, it prevents a predic-
tive and intelligent power manager from using all the information and configuration at
its disposal.

To meet the goals of abstraction and controllability, we use the layered architecture
shown in Figure 1. It consists of three primary components: compute-aware applications,
hardware abstraction layer and a quality of service manager. As discussed in Section 2, the
middleware is based upon the work presented in [45] and differs primarily in abstraction
level, discussed below.

We define compute-aware applications (CAAs) as programs which meet two needs
of controllability, namely, the ability to change algorithms dynamically and to provide a
progress or performance metric. CAAs can be composed with their individual controls
and outputs shared with the QoSM. The CAA state is continuously monitored by the
QoSM. This state consists of both metrics (e.g., latency, error) and application guidance
to the hardware. Most importantly, the QoSM does not have to understand the meaning
of a specific metric or guidance is, it is only required to integrate it into a state vector or
feature reduced state. While we do not attempt feature reduction in this work, it has been
effective for modeling and prediction in GPUs [55] and CPUs [56]. The QoSM takes this
state vector and uses a policy—or set of policies—to take an action. Again, this action does
not have to be understood by the QoSM, it is only required to observe the outcome. As
an analogy, the QoSM turns an unlabeled knob, and then observes the reward obtained
from its action. The actions are then converted by a hardware abstraction layer (HAL) into
low-level platform-specific hardware or operating system changes.
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Figure 1. A high level view of the software framework architecture.

In the other direction, the operating system sends metrics such as hardware per-
formance counters, CPU load, memory utilization, slack time, temperature, or power
measurements to the HAL. The metrics end up in a (possibly featured reduced) state vector
which is passed to the QoSM. Much like the QoSM sends actions to the HAL, the QoSM
may also suggest algorithmic changes to a CAA. For example, if the QoSM finds there is
excess capacity in the system, it can advise a CAA to use higher performance algorithms
(e.g., processing higher resolution frames or conducting deeper searches). Alternatively,
when the QoSM believes capacity is limited, it can notify CAAs, allowing applications
to choose to degrade more gracefully. By coordinating the behavior or application and
hardware, more intelligent and tailored power management policies may be developed.

4.2. Q-Learner Quality of Service Manager (2QoSM)

As other researchers have demonstrated and as discussed in Section 3, reinforcement
learning is a good choice for managing DVFS states and algorithmic profiles of applica-
tions. Q-leaning is a specific technique for reinforcement learning which works absent any
underlying model [57]. Without a model, Q-Learning estimates a real-valued function Q
of states and actions where Q(s, a) is the expected discounted sum of future rewards for
performing action a in state s [58]. Q-values are saved in a s× a Q-matrix. We calculate Q
using the function

Qnew(st, at) = (1− α) ·Q(s, a) + α · (rt + γ ·max
a

Q(st+1, at)) (4)
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where Qnew(st, at) is the new value at time tin the Q-matrix at (st, at). α is a learning rate,
rt is the instantaneous reward at time t, γ is the discount factor, and maxa Q(st+1, at) is an
estimate of an optimal future value. The learning rate α ∈ [0, 1] is used to balance new
information with previously calculated Q values. As α→ 1, Q updates are more affected
by new rewards, whereas a smaller α gives more importance to existing Q values. The
discount factor γ weighs future versus present rewards. In other words, if the discount
factor is large, future rewards are preferred, while a small discount factor favors immediate
rewards. γ = 0 creates an algorithm that maximizes only instantaneous rewards, while
γ ≥ 1 does not converge and Q values will become infinite. To determine the optimal
future value, the learner determines the best possible Q available based upon action a.

Algorithm 1 shows the algorithm used for updating the Q-matrix. To initialize the
learner, an S × A Q-matrix is allocated where S is the number of states and A is the
number of actions. Though are implementation initializes the Q-matrix values to zero, it is
possible to randomly initialize the matrix [59] or to pre-populate the Q-matrix for faster
convergence [60]. At the beginning of every step, the learner observes current state st. After
examining the values in row Q(st) it takes, based upon its selection policy, an action—most
often the action with the highest qst ,a. During training instead of taking the best action, it is
good practice to take a random action with probability ρ to better explore the action–reward
space. It is also possible to lower learning rate α as the Q-learner converges, preventing
outliers from overly affecting a well-trained learner. After the action is taken, the learner
observes the reward r and Qnew(st, at) is updated using Equation (4).

Algorithm 1 Q-Learning Update
1: if t = 0 then
2: Initialize Q-matrix ∀a, s, Q(s, a) = 0
3: end if
4: while st+1 6= endstate do
5: Determine current state st
6: Find maxa Q(st, a)
7: Take action a based on policy
8: Calculate instantaneous reward r
9: Update Q based upon Equation (4)

10: end while

As the system moves traverses states by taking actions, successive updates to a previ-
ously encountered Q(s, a) begin to decrease in magnitude, thus the learner converges. In
infinite time Q-learners converge to an optimal policy, however the parameters of γ, α and
ρ can lead to very different learners in finite time [61].

Most problems approached with Q-learning have a fixed end state. Once this state
is reached, the algorithm ends, and a new epoch begins, reusing the existing Q-matrix.
However, it is also possible to use Q-learning for non-episodic tasks i.e., those without a
terminal state. As long as the system finds itself in previously encountered states, the learner
can still improve its its Q-function. This non-episodic (and potentially indeterminate) model
is well-suited for power management.

5. Experimental Results

There are three reasons why an autonomous robot was selected to test the 2QoSM.
First, due to being battery powered, an autonomous robot has a limited power budget,
and a reduction in CPU energy consumption means more power for the motors, and thus
a longer run time. Furthermore, the power consumption is relatively balanced between
two components: the ODROID XU4 and the motors. Thus, a less-optimal path may use
less CPU energy, but the path may require significant more energy for the motors due
to starting and stopping or large numbers of sharp turns. Second, path and trajectory
planning have a mixed performance profile, consisting of regions of both computationally
and memory intensive execution. The path planning algorithm is also anytime, meaning
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the more computational effort spent finding a path, the better the path obtained. Third, the
application has a very important metric of overall system performance: physical system
error measured as deviation from the ideal path.

Section 5.1 details the test platform, Section 5.2 describes the software implementation
of 2QoSM, Section 5.3 examines the training and convergence of different reward functions,
and Sections 5.4 and 5.5 evaluate the overall performance of the system.

5.1. Experimental Platform

The autonomous robot is based upon the DF Robot Cherokey 4WD [62]; however, it
has been significantly modified. The robot can be seen in Figure 2. Aside from physical
modifications, the computational system has been split, creating a custom, stacked hetero-
geneous architecture, consisting of two separate computational units: an Arduino ROMEO
BLE ATMega328/P [63] and an ODROID XU4 [64].

Figure 2. The robot.

A block diagram of this architecture is shown as Figure 3. The Arduino ROMEO BLE
is adept at the low-level operation of the motors via built-in H-Bridge motor controllers. In
addition, the ROMEO has analog and digital general purpose input-output (GPIO) pins
for sampling and operating sensors. The basic motor control is done via PID control. In
addition, it uses sensor data to make odometry calculations and transmits needed data via
SPI to the ODROID XU4. It runs PID motor controllers, makes odometry calculations and
is connected via SPI to the upper-level ODROID XU4.

This data is used by the ODROID XU4 for mapping, route planning and trajectory
planning. The ODROID XU4 is build around a Samsung Exynos5422, an ARM big.LITTLE
processor. The XU3 and XU4 are very similar and have been used extensively as a test plat-
form in previous research into intelligent power management [39,43–45,53,65]. The ARM
big.LITTLE heterogeneous multiprocessing architecture (HMP) consists of two clusters of
cores: four high performance, higher-power Cortex-A15 cores and four lower-performance,
lower-power Cortex-A7 cores. DVFS operates on a per-cluster granularity [66] and threads
are scheduled automatically between the two types of cores [67]. The default scheduler
is used in this research; however, using the 2QoSM to schedule threads on cores (as an
available action) is possible in future research. It runs a stock version of Ubuntu Linux
18.04 with kernel v4.14.5-92. The details of the platform are summarized in Table 1.
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Figure 3. A block diagram of the stacked architecture of the robot.

Table 1. Platform Overview.

high-level
controller

board ODROID XU4 [64]
processor Samsung Exynos5422 8-core big.LITTLE [68]
DRAM 2 GB
storage 16 GB eMMC
network 802.11b wireless via USB
operating system Ubuntu 18.04
kernel Linux 4.14.5-92

low-level
controller

board Arduino ROMEO [63]
processor ATMega 328P

The robot acts in a 12 m × 12 m course, divided by the mapping algorithm into
1,440,000 1 cm squares. There are three walls in the environment that force the robot to
slalom in order to make it to the end point. For path planning, the robot uses Anytime
Dynamic A* [69], which is well suited for use as a CAA because the path quality is
iteratively and monotonically improved the longer the algorithm executes. If there exists
a path through the obstacles, ADA* is guaranteed to find a correct path using a single
iteration. However, with more resources (i.e., execution time), it can find more efficient
paths, eventually searching the entire search space and finding an optimal path. If the
robot detects a new obstacle, it updates the location in the map, and notifies the planning
thread, which recalculates the path. The trajectory planner (also in its own thread), uses the
information obtained by the odometry and determines the necessary maneuvers to follow
the calculated path. These commands are passed to the ROMEO via SPI.

5.2. Quality-of-Service Manager Implementation

The 2QoSM was written as a drop-in replacement for the situation-aware governor [45].
Rather than using an existing Q-learning library (e.g., pytorch [70]), we implemented the
Q-Learner in C using the GNU Scientific Library (GSL) [71]. While an existing library has
advantages, there were a few motivating reasons to implement our learner from scratch.
First of all, the majority of machine learning libraries are written in Python, a language
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generally unsuited for performance-critical systems programming. Second, while there
are C++-based machine learning libraries, this would require moving from an entirely
C-based architecture. Fortunately, Q-Learning is a fairly simple algorithm and was easily
implemented using only the GSL.

In line with the multi-threaded controller architecture, the Q-Learner runs in its own
thread, with a 10 ms sample period. Timing is handled using Linux high-resolution timers
(hrtimers) Upon activation, the conditional at line 4 of Algorthm 1 is tested, and if the
robot is not in its end state, it begins its update.

First, the QoSM collects available metrics, discretizes them and packs them to states.
We assessed several different state vector compositions, but the data we present in this
paper use the state variables shown in Table 2. As the third column shows, as we increase
the number of discrete levels of the state variables, the increase in state space size is
multiplicative. The entries of the Q-matrix are represented by a 64 bit (8 B) double and
there is one value per action, per row. Though each individual row in the Q-matrix is only
40 B, the multiplicative increase in matrix size makes the selection of state variables and
the discretization precision very important. However, even with 1600 states, the Q-matrix
is only 64 KB large. A simple optimization would be to replace the 64 b double with a 32 b
float, either halving the size of the matrix or allowing for twice the number of states.

Table 2. State Vector Composition.

Metric Discretization Levels Cumulative States Size (B)

error 10 10 400 B
power consumption 10 100 4000 B

replanning mode 2 200 8000 B
checksum error 4 400 16,000 B

map updates 2 1600 64,000 B

Once the learner determines its current state, it finds the row in its Q-table that is
associated with this state. Based upon the current policy, it selects the best action. The policy
used in this work is, with probability ρ = 0.9, to choose the action with the highest future
reward, otherwise take a random action. After taking the action, the learner calculates its
reward function as a result of the action taken, and updates Q(st, at). The timer is then
reset and the thread goes back to sleep for 10 ms.

The state of the robot, its power consumption and location in the test region can be
observed from an ncurses-based console as shown in Figure 4. This simple but responsive
interface allows monitoring via the network, allowing for remote operation with minimal
computational overhead.

5.3. Training and Convergence

To train the Q-Learner, the robot navigated to randomly selected coordinates in an
environment filled with obstacles. Figure 5 shows a sample training run. To determine
adequate convergence of the learner, we observed a windowed average of the magnitude of
the Q updates. When the update remained below a threshold for a certain amount of time,
the algorithm was considered trained. The longest period of training was approximately
600 s, so we ran all reward functions to a full 600 s. These trained matrixes were then
fixed, and used at the start of each experiment presented in Section 5. As Q-learning is an
online-learning algorithm, it will continue to update its policy constantly, each successive
run has a further-trained learner. Although we did not see any indication that successive
runs using an increasingly trained learner gave a noticable performance improvement, for
better comparison of results, the matrix obtained after the 600 s of training were reused at
the start of each run.
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Figure 4. A screenshot of the console while the training is running.

Figure 5. During the 600 s training phase, the robot traversed to randomly selected points on a map
with 6 obstacles. The red dots represent the target points.

In a production implementation of 2QoSM, a few changes could be made for greater
robustness. For one, the Q-Learner could itself determine when training had reached a
certain quality by observing the magnitude of Q-matrix updates. From this is could reduce
the probability of a random action ρ and the learning rate α, reducing the exploration and
update rate.

The variables used in the reward functions are shown in Table 3.
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Table 3. Symbols Used in Reward Functions.

Symbol Description

t Time of sample
Pt Instantaneous Power at time t

Pmax Maximum measured power
Et Error measured at time t

Emax Maximum measured error
r ADA* replanning active (0, 1)

∑ r Accumulating sum of replanning
P̄n n-Sample moving Average of Power

Figure 6 shows the updates to the Q-matrix at each sample time for seven different
reward functions described in Table 4. The absolute value of the update to Q-values are
shown on each y-axis, and the training time is shown on the x-axis. Periods when the robot
is replanning its path are indicated by red bars underneath each plot. Over the 600 s of
learning the magnitudes of Q-updates decrease as the policy converges. The error-only
reward function is the least convergent due to the difficult-to-predict relationship between
CPU power consumption and robot path-following. We see similar difficulties in convergence
when error is weighted more heavily as in the 6th reward function (weighted error/power).

Table 4. Reward Functions Tested in 2QoSM.

Number Reward Description Reward Function

1 Power Only 1− Pt
Pmax

2 Error Only 1− Et
Emax

3 Power + Error 2−
(

Pt
Pmax

+
Et

Emax

)
4 Power + Error + Replan Flag 3−

(
Pt

Pmax
+

Et
Emax

+ r
)

5 Power + Error + Accumulating Replan Flag 3−
(

Pt
Pmax

+
Et

Emax
+ ∑ r

)
6 Weighted 1:10 power to error 1−

(
0.1 · Pt

Pmax
+ 0.9 · Et

Emax

)
7 Error + 10-sample Moving Average of Power 2− (Et + P̄10)

On the other hand, the power-dominated reward functions converge quickly because
the Q-learner easily and correctly determines that to maximize reward, simply reducing
the P-state is effective. The 10-sample moving average, which adds a delay to the reward,
is learned quickly thanks to the discount factor γ, adding value to time-delayed rewards.

To get a better understanding of the state space of the Q-learner, Figure 7 shows a
heatmap of the Q-matrix after a completed training session. The darker the color, the
greater future reward associated with a given state–action pair. Here we can see that there
is obvious clustering due to the state creation and discretization. The lightest colored
squares of the Q-matrix are states that were seldom or never reached or provided very little
reward. The order in which the state vector is packed with the state variables determines
the layout of the Q-matrix. The most significant bits of the state vector are the error term.
Because the error in general remains low, the majority of the states reached are in the left
side of the matrix. Further clustering occurs due to the map updates being fairly infrequent
and replanning mode being the most computationally intensive section of the program,
thus being correlated with higher power states. This distribution and under-utilization of
the Q-matrix shows the value of more sophisticated methods of state discretization such
as adaptive state segmentation [72,73]. Another option for greater utilization of the state
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space while reducing the matrix size is Deep Q-Learning [53]; however, this introduces
challenges discussed in Section 2.3.
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Figure 6. The changing updates to the Q states is the metric used to evaluate the convergance of
the policy.

5.4. Metrics

The performance of each reward function is compared to the Linux on-demand gover-
nor [19] and a situation-aware governor [45]. Figure 8 compares average path error, power
and navigation time across 10 runs each. As previously mentioned, the Q-learner updates
the Q-matrix during the course of the run, but before starting any successive runs, it reloads
the post-training Q-matrix.

These basic metrics demonstrate the behavioral differences between the various reward
functions. This can be seen quite clearly when examining the power-only and error-only
rewards. If the learner optimizes for power, it obtains the lowest power consumption of
any governor or reward function, but also has significantly higher error. Conversely, if
the learner aims to only minimize error, it has lower error than all other policies but at
the cost of a higher power consumption than all but the Linux on-demand governor. As
the run-time remains approximately the same for all governors, the reduction in average
power correspond to total energy savings and thus total robot battery life.
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Figure 7. This figure shows the distribution and magnitude of updates in the Q-matrix. Darker colors
show a higher measured future reward Q while the lightest values generally show state–action pairs
that were never reached.
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The power-only reward function reduces power consumption by 2.98 W (42.6%)
compared to the on-demand governor and 0.457 W (10.2%) compared to the situation-
aware governor. RMS error is minimized using an error-only reward function, showing a
6.1% improvement over on-demand and 8.9% over the situation-aware governor. This is an
interesting result, since previous work had shown that the on-demand error was very close
to a static high-power setting. The most likely explanation is that the proactive application
guidance during replanning mode proactively prepares for computationally-intensive
regions better than the reactive power management of on-demand. This is because while
on-demand keeps average power high because of the fairly active application (trajectory
planning, communications, etc.); however, it still attempts to adjust P-states, finding itself
in a less-than-optimal performance state when activity spikes. The reward function that
sums power and error lowers power consumption in comparison to the Linux on-demand
governor by 2.703 W (38.7%) and to the situation-aware governor by 0.18 W (4.0%). We
also see an improvement in error over on-demand and situation-aware governors by 4.6%
and 7.49% respectively.

When making decisions about whether to reduce performance (and execution time) in
return for energy savings, it is helpful to use energy delay product (EDP) [74,75]. The EDP is

EDP = E · Tw (5)

where E is normalized energy, T is normalized task time, and w is the weight placed on
performance. The on-demand governor is used as the baseline for energy and execution
time. All evaluated QoSMs significantly outperform the on-demand governor, and all but
the error-only and weighted power and error outperform the situation-aware governor.
Because the actual traversal of the path is quite close among runs, the power-minimizing
algorithms always perform the best, obscuring differences between the reward functions.

For this reason, we include the energy-error delay product (EEDP) [45]

EEDP = E · εwe · Twd (6)

where E and T are normalized energy and runtime as in Equation (5), ε is the normalized
system error, wε error-term weighting, and wd delay-term weighting. By including error
into this metric, it is possible to evaluate different policies more clearly. We can differentiate
between the performance as it relates to energy, error, and delay. These results are shown
on the bottom of Figure 8. If energy and delay are given the same weights, the power-only
reward function continues to outperform the others. However, if we emphasize either
error or delay, the power-and-error sum reward function shows better performance. By
adding EEDP as an evaluation metric for power management decisions, researchers can
better select the policy that meets system goals by differentiate between the behavior of
different algorithms.

5.5. Time Series Evaluation

To better understand the behavior of the learners during the course of the experiments,
we collected data at every update (10 ms) of the algorithm over the course of run. The
previously presented data in Section 5.4 are 10-run averages, the time series data represent
a single representative traversal of the course.

We will examine reward functions individually; however, the presentation of data is
the same. The current (a stand-in for power since the voltage remains constant) is shown
in blue and measured on the left-hand y-axis. Reward shares this axis and is shown in
fuscia. The measured error from the desired path is shown in red and uses the right-hand
y-axis and is measured in millimeters. When 2QoSM is in replanning mode, the graph is
highlighted in peach.

Figure 9 shows the behavior of 2QoSM when the only goal is to minimize error. In
aggregate, the error is lowest in the error-only reward function but, examining the time
series data, it is not obvious why this is the case. Most likely, the application guidance from
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the navigation algorithm allows the 2QoSM to proactively power-up the cores to maximum
performance, reducing the latency introduced by a sudden increase in computational
intensity. This lower latency allows for a faster rerouting and thus a smaller divergence
from the ideal path. However, this uncertainty in behavior demonstrates one of the
shortcomings of Q-learning (and machine learning in general), namely, we can often get
very good results but it is not always clear why they are good. Fortunately, using other
reward functions, the learner’s behavior is much more clear.

It is much easier to see how the policy using a power-only reward function behaves
in Figure 10. The learner capably decides that highest rewards come from aggressive
CPU throttling. Even during the error spikes at 73 s, the power stays low. This is correct
behavior in this specific situation because the error is due to drift from the path while
calculating a new path. As soon as the path is calculated, the robot can refind the path just
as quickly in low-power mode as in high-power. This behavior is quite similar to that of
the situation-aware governor [45], but requires no understanding of the system itself nor
any tuning of Kp and Ke parameters.

By adding path error back into the reward function, as shown in Figure 11, the learner
behaves very similarly to using a power-only reward function. Again, the learner identifies
that with a reduction in power, significant rewards are possible, and thus attempts to
aggressively power-down the system when not replanning. Similarly, it does not respond
to spikes in error. Even though in this situation, not responding to path drift is the correct
behavior, in scenarios in which path error is due to CPU underperformance, the lack of
reaction to the error could be seen as a failure. However, it is possible that if error due to
CPU overutilization occurred, the characteristics and response to state changes would be
different and the learner would learn the correct behavior. This is a topic for future research.
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Figure 9. A time series plot of a single run using the error-only reward function.
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Figure 10. A time series plot of a single run using the power-only reward function.
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Figure 11. A time series plot of a single run using a sum of power and error as the reward function.

If we include in the reward function whether or not the robot is in replanning mode,
we obtain the results shown in Figure 12. The motivation behind reducing the reward in
replanning mode is to incentivize the learner to minimize the amount of time in replanning
mode, and the only way to do this is to maximize CPU performance to quickly find the
path. This reward function performs quite well overall, including when responding to
increased error. By having three equal inputs to the reward, it may be diluting the influence
of the Pt term, thereby making the Et more important.
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Figure 12. A time series plot of a single run using a sum of power, error and replan as the
reward function.

Because the goal of introducing the replanning mode r into the reward function
was to limit the amount of time in replanning mode, we also evaluated an accumulating
replanning variable ∑ r which reduces the reward by a greater amount the longer the
robot remains in replanning mode. This makes it more “painful” for the algorithm to
replan, with the goal of having the learner more aggressively attempt to get through the
intensive section. Due to the high sampling frequency of the Q updates, we capped ∑ r
so as not to completely overwhelm the reward function. Even with this protection, ∑ r
clearly dominates the reward function shown in Figure 13 and seems to negatively affect
the learner’s ability to reach an ideal power state.
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Figure 13. A time series plot of a single run using a ramping sum of power, error and replan as the
reward function.
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While the various power-optimizing reward functions show improvement over tradi-
tional governors, the learner still has difficulty reacting to error, both due to drift during
path recalculation and non-deterministic path error. In order to put more emphasis on
the error portion of the reward function, we modified the sum of power and error to be
weighted in favor of the error. The time-series measurements of the 1:10 power–error
reward function are shown as Figure 14. From the fuscia plot of the reward function, it
is clear that power dominates the reward function, however there is very little change in
behavior when the error is high. This is further evidence of the challenges of using physical
system error to train a power manager. Even with a discount factor γ that favors future
rewards over instantaneous ones, the learner still has difficulty finding actions that react to
significant changes in error. That said, even with a 10x emphasis on error, simply having
power in the reward function allows the learner to reduce power significantly.

Because error due to computational system latency lags the event itself due to the
behavior of the physical robot, we attempt to slow down power observations by use of a
moving average. We evaluated 10, 50 and 100-sample moving averages experimentally,
but we only present the 10-sample moving average in Figure 15. Both 50 and 100-sample
moving averages had worse performance than the 10-sample version without any rec-
ognizable reaction to the increasing error. Given the 10 ms sample time, the 10-sample
moving average still reacts quite quickly to CPU state changes. This means that the learner
is still able to obtain greater rewards by selecting lower-power states. However, without
the instantaneous feedback from DVFS state changes, the learner seems less effective and
thus the power reduction is less significant. Furthermore, as seen at t = 83 s, power con-
sumption increases without any identifiable cause. This is likely the fault of the delayed
power observations making the learner less certain about the correct action to take.
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Figure 14. A time series plot of a single run using a weighted sum of power and error.
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Figure 15. A single traversal of the course with error and 10-sample moving average of power reward
function. 2− (Et + P̄10).

6. Conclusions

This paper describes three significant results. First, we present a C-based Q-learning
quality-of-service manager that learns a power management policy by taking input from
both the application and computing platform. This 2QoSM is a drop-in replacement in the
software framework described in [45], allowing for quick development and deployment on
an autonomous robot. Depending on the reward function used, the 2QoSM reduced power
by 38.7–42.6% over the Linux on-demand governor and 4.0–10.2% over the situation-aware
governor. With the addition of an error term in the reward function, 2QoSM reduces
error by 4.6% to 8.9% compared to these governors. In addition, this technique can be
easily adapted for different systems by adjusting the reward functions, state vector and
learning parameters.

Second, we provide further evidence for the value of reusable software abstractions
provided by the software framework. The Q-learner was added to the existing infrastructure
without changes to the framework itself. In addition, we did not have to tune the governor
based upon metrics or states. All the developer must provide is a discretization of the
state variables and enumeration of the possible actions. This simplicity enables the use
of complex or novel machine learning algorithms as well as easier porting to different
hardware and applications. System programmers are not restricted to a specific learner, or
indeed even to a specific control paradigm.

Three, we want to emphasize the challenges inherent in using even relatively simple
machine learning techiques. While Q-learning is a well-understood and often-used algo-
rithm, the policies it develops are much more opaque. Increasingly, there is a trade-off
that must be made between ease-of-use of well-performing machine learning and human
understanding and control of these complex systems.

Future work continues in three different areas. First, Q-Learning has difficulty learning
an optimal policy when the desired quality-of-service metric/reward is not directly changed
by the actions performed. In our case, the error encountered is not always due to the
actions taken by the computing platform; therefore, it is difficult to determine what the
right decision is when confronted with error. In addition, when there is a portion of the
reward (e.g., power) that is directly and instantaneously affected by the actions, this tends
to dominate the learner’s policy. Some of these can be ameliorated with a more thorough
parametric search of the learner itself, examining a larger range of discount factors, learning
rates and actions. We are exploring other reinforcement learning techniques such as Q(λ)
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and Deep Q-Learning. The former allows for a longer history of actions to influence the
policy and the latter allows for a larger state space to be taken into account.

Second, we are evaluating the framework on other systems that share the proper-
ties of different performance modes and a metric of progress. Possible targets include
OLTP workloads (e.g., transaction latency as a metric) or video encoding/decoding with
quality/framerate as a changeable operating mode and signal-to-noise ratio as a metric
of performance.

Finally, we are looking at further abstractions of the hardware system which may
allow for a more universal framework for policy development and deployment. If there
were detailed semantics for describing the hardware as seen by systems software, we can
more thoroughly use the available hardware for the creation of policies for not only power
management, but allocation and scheduling.
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